Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163939

RESUMO

Since the synthesis of prontosil the first prodrug shares their chemical moiety, sulfonamides exhibit diverse modes of actions to serve as antimicrobials, diuretics, antidiabetics, and other clinical applications. This inspiring chemical nucleus has promoted several research groups to investigate the synthesis of new members exploring new clinical applications. In this study, a novel series of 5(4H)-oxazolone-based-sulfonamides (OBS) 9a-k were synthesized, and their antibacterial and antifungal activities were evaluated against a wide range of Gram-positive and -negative bacteria and fungi. Most of the tested compounds exhibited promising antibacterial activity against both Gram-positive and -negative bacteria particularly OBS 9b and 9f. Meanwhile, compound 9h showed the most potent antifungal activity. Moreover, the OBS 9a, 9b, and 9f that inhibited the bacterial growth at the lowest concentrations were subjected to further evaluation for their anti-virulence activities against Pseudomonas aeruginosa and Staphylococcus aureus. Interestingly, the three tested compounds reduced the biofilm formation and diminished the production of virulence factors in both P. aeruginosa and S. aureus. Bacteria use a signaling system, quorum sensing (QS), to regulate their virulence. In this context, in silico study has been conducted to assess the ability of OBS to compete with the QS receptors. The tested OBS showed marked ability to bind and hinder QS receptors, indicating that anti-virulence activities of OBS could be due to blocking QS, the system that controls the bacterial virulence. Furthermore, anticancer activity has been further performed for such derivatives. The OBS compounds showed variable anti-tumor activities, specifically 9a, 9b, 9f and 9k, against different cancer lines. Conclusively, the OBS compounds can serve as antimicrobials, anti-virulence and anti-tumor agents.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Oxazolona/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Sulfonamidas/química , Virulência/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Percepção de Quorum , Fatores de Virulência/metabolismo
2.
Onco Targets Ther ; 14: 3849-3860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194230

RESUMO

BACKGROUND: Pancreatic cancer is one of the most serious and lethal human cancers with a snowballing incidence around the world. The natural product celastrol has also been widely documented as a potent anti-inflammatory, anti-angiogenic, and anti-oxidant. PURPOSE: To elucidate the antitumor effect of celastrol on pancreatic cancer cells and its modulatory role on whole genome expression. METHODS: The antitumor activity of celastrol on a panel of pancreatic cancer cells has been evaluated by Sulforhodamine B assay. Caspase 3/7 and histone-associated DNA fragments assays were done for apoptosis measurement. Additionally, prostaglandin (PGE2) inhibition was evaluated. Moreover, a microarray gene expression profiling was carried out to detect possible key players that modulate the antitumor effects of celastrol on cells of pancreatic cancer. RESULTS: Our findings indicated that celastrol suppresses the cellular growth of pancreatic cancer cells, induces apoptosis, and inhibits PGE2 production. Celastrol modulated many signaling genes and its cytotoxic effect was mainly mediated via over-expression of ATF3 and DDIT3, and down-expression of RRM2 and MCM4. CONCLUSION: The current study aims to be a starting point to generate a hypothesis on the most significant regulatory genes and for a full dissection of the celastrol possible effects on each single gene to prevent the pancreatic cancer growth.

3.
Colloids Surf B Biointerfaces ; 203: 111724, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33838582

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the coronavirus (COVID-19), is the virus responsible for over 69,613,607 million infections and over 1,582,966 deaths worldwide. All treatment measures and protocols were considered to be supportive only and not curative. During this current coronavirus pandemic, searching for pharmaceutical or traditional complementary and integrative medicine to assist with prevention, treatment, and recovery has been advantageous. These phytopharmaceuticals and nutraceuticals can be more economic, available, safe and lower side effects. This is in silico comparison study of ten phenolic antiviral agents against SARS-CoV-2, as well as isolation of the most active metabolite from natural sources. Zinc oxide nanoparticles (ZnO NPs) were also then prepared using these metabolite as a reducing agent. All tested compounds showed predicted anti-SARS-CoV-2 activity. Hesperidin showed the highest docking score, this leads us to isolate it from the orange peels and we confirmed its structure by conventenional spectroscopic analysis. In addition, synthesis of hesperidin zinc oxide nanoparticles was characterized by UV, IR, XRD and TEM. In vitro antiviral activity of hesperidin and ZnO NPs was evaluated against hepatitis A virus as an example of RNA viruses. However, ZnO NPs and hesperidin showed antiviral activity against HAV but ZnO NPs showed higher activity than hesperidin. Thus, hesperidin and its mediated ZnO nanoparticles are willing antiviral agents and further studies against SARS-CoV-2 are required to be used as a potential treatment.


Assuntos
COVID-19 , Hesperidina , Nanopartículas , Óxido de Zinco , Antivirais/farmacologia , Simulação por Computador , Hesperidina/farmacologia , Humanos , SARS-CoV-2 , Óxido de Zinco/farmacologia
4.
Molecules ; 26(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805918

RESUMO

Scaffolds hybridization is a well-known drug design strategy for antitumor agents. Herein, series of novel indolyl-pyrimidine hybrids were synthesized and evaluated in vitro and in vivo for their antitumor activity. The in vitro antiproliferative activity of all compounds was obtained against MCF-7, HepG2, and HCT-116 cancer cell lines, as well as against WI38 normal cells using the resazurin assay. Compounds 1-4 showed broad spectrum cytotoxic activity against all these cancer cell lines compared to normal cells. Compound 4g showed potent antiproliferative activity against these cell lines (IC50 = 5.1, 5.02, and 6.6 µM, respectively) comparable to the standard treatment (5-FU and erlotinib). In addition, the most promising group of compounds was further evaluated for their in vivo antitumor efficacy against EAC tumor bearing mice. Notably, compound 4g showed the most potent in vivo antitumor activity. The most active compounds were evaluated for their EGFR inhibitory (range 53-79%) activity. Compound 4g was found to be the most active compound against EGFR (IC50 = 0.25 µM) showing equipotency as the reference treatment (erlotinib). Molecular modeling study was performed on compound 4g revealed a proper binding of this compound inside the EGFR active site comparable to erlotinib. The data suggest that compound 4g could be used as a potential anticancer agent.


Assuntos
Antineoplásicos , Modelos Moleculares , Proteínas de Neoplasias , Neoplasias/tratamento farmacológico , Pirimidinas , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Células HCT116 , Células Hep G2 , Humanos , Células MCF-7 , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Braz J Microbiol ; 52(2): 627-638, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33686563

RESUMO

BACKGROUND: Serratia marcescens becomes an apparent nosocomial pathogen and causes a variety of infections. S. marcescens possess various virulence factors that are regulated by intercellular communication system quorum sensing (QS). Targeting bacterial virulence is a proposed strategy to overcome bacterial resistance. Sitagliptin anti-QS activity has been demonstrated previously and we aimed in this study to investigate the effects of antidiabetic drugs vildagliptin and metformin compared to sitagliptin on S. marcescens pathogenesis. METHODS: We assessed the effects of tested drugs in subinhibitory concentrations phenotypically on the virulence factors and genotypically on the virulence encoding genes' expressions. The protection of tested drugs on S. marcescens pathogenesis was performed in vivo. Molecular docking study has been conducted to evaluate the interference capabilities of tested drugs to the SmaR QS receptor. RESULTS: Vildagliptin reduced the expression of virulence encoding genes but did not show in vitro or in vivo anti-virulence activities. Metformin reduced the expression of virulence encoding genes and inhibited bacterial virulence in vitro but did not show in vivo protection. Sitagliptin significantly inhibited virulence factors in vitro, reduced the expression of virulence factors and protected mice from S. marcescens. Docking study revealed that sitagliptin is more active than metformin and fully binds to SmaR receptor, whereas vildagliptin had single interaction to SmaR. CONCLUSION: The downregulation of virulence genes was not enough to show anti-virulence activities. Hindering of QS receptors may play a crucial role in diminishing bacterial virulence.


Assuntos
Antibacterianos/farmacologia , Reposicionamento de Medicamentos , Hipoglicemiantes/farmacologia , Infecções por Serratia/tratamento farmacológico , Serratia marcescens/efeitos dos fármacos , Animais , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Feminino , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Hipoglicemiantes/química , Metformina/química , Metformina/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Infecções por Serratia/microbiologia , Serratia marcescens/genética , Serratia marcescens/patogenicidade , Serratia marcescens/fisiologia , Vildagliptina/química , Vildagliptina/farmacologia , Virulência/efeitos dos fármacos , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
7.
Microb Pathog ; 138: 103777, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31600543

RESUMO

The capacity of C. jejuni to survive acid and capture iron is a requirement for C. jejuni to colonize host and cause infection. Herein, we aimed to characterize the influence of iron on Campylobacter acid response. The capacity of C. jejuni to survive acid stress was greatly enhanced in presence of iron. Moreover, the acid stimulon of C. jejuni under iron-enriched condition was investigated using the microarray approach. A total of 211 genes were differentially expressed in C. jejuni. Differentially expressed genes were included in 21 functional groups that control Campylobacter physiology. C. jejuni induced expression of many genes that were previously shown to be important for Campylobacter acid survival such as flagella biogenesis genes and genes involved in cell envelope biogenesis. The microarray results were validated using RT-qPCR where there was a great similarity in data obtained by both techniques. Finally, comparative analysis with previous studies showed that acid exposure induced expression of many genes in C. jejuni that were not detected in other studies such as genes encoding for the heat shock proteins GroEL and GroES. Current data could help us understand the mechanism of C. jejuni acid survival and consequently overcome infection by this enteric pathogen.


Assuntos
Ácidos/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Estresse Fisiológico , Transcriptoma , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Viabilidade Microbiana
8.
J Enzyme Inhib Med Chem ; 34(1): 1110-1120, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31117890

RESUMO

New anticancer agents are highly needed to overcome cancer cell resistance. A novel series of pyrimidine pyrazoline-anthracene derivatives (PPADs) (4a-t) were designed and synthesised. The anti-liver cancer activity of all compounds was screened in vitro against two hepatocellular carcinoma (HCC) cell lines (HepG2 and Huh-7) as well as normal fibroblast cells by resazurin assay. The designed compounds 4a-t showed a broad-spectrum anticancer activity against the two cell lines and their activity was more prominent on cancer compared to normal cells. Compound 4e showed high potency against HepG2 and Huh-7 cell lines ((IC50=5.34 and 6.13 µg/mL, respectively) comparable to that of doxorubicin (DOX) activities. A structure activity relationship (SAR) has been investigated and compounds 4e, 4i, 4m, and 4q were the most promising anticancer agents against tested cell lines. These compounds induced apoptosis in HepG2 and Huh-7 cells through significant activation of caspase 3/7 at all tested concentrations. In conclusion, 4e could be a potent anticancer drug.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Desenho de Fármacos , Neoplasias Hepáticas/tratamento farmacológico , Pirimidinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Modelos Moleculares , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
9.
Naunyn Schmiedebergs Arch Pharmacol ; 392(2): 165-175, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30465055

RESUMO

Cancer is a broad term used to describe a large number of diseases characterized by uncontrolled cell proliferation that leads to tumor production. Cancer is associated with mutations in genes controlling proliferation and apoptosis, oxidative stress, fatty acid synthase (FAS) expression, and other mechanisms. Currently, most antineoplastic drugs have severe adverse effects and new effective and safe drugs are needed. This study aims to investigate the possible anticancer activity of rutin and orlistat which are both safely used clinically in humans against two breast cancer models (in vivo EAC and in vitro MCF7) and the pancreatic cancer cell line (PANC-1). Our results have shown that both rutin and orlistat exerted an in vivo anticancer activity as evidenced by the decrease in tumor volume, CEA level, cholesterol content, FAS, and the exerted antioxidant action (reduced MDA level and increased GSH content) and through histopathological examination. In addition, both were cytotoxic to MCF-7 and Panc-1 cell lines by promoting apoptosis. In conclusion, the anticancer activity of rutin and orlistat makes them promising candidates for cancer treatment alone or in combination with other anticancer drugs specially that they are used clinically with an acceptable safety profile.


Assuntos
Antineoplásicos/uso terapêutico , Antioxidantes/uso terapêutico , Carcinoma de Ehrlich/tratamento farmacológico , Orlistate/uso terapêutico , Rutina/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Antígeno Carcinoembrionário/metabolismo , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patologia , Linhagem Celular Tumoral , Colesterol/metabolismo , Ácido Graxo Sintases/metabolismo , Feminino , Humanos , Camundongos , Orlistate/farmacologia , Rutina/farmacologia , Carga Tumoral/efeitos dos fármacos
10.
Front Pharmacol ; 9: 915, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174602

RESUMO

Dendritic cells (DCs) are pivotal for the induction and maintenance of antigen-specific tolerance and immunity. miRNAs mediate post-transcriptional gene regulation and control in part the differentiation and stimulation-induced immunogenic function of DCs. However, the relevance of miRNAs for the induction and maintenance of a tolerogenic state of DCs has scarcely been highlighted yet. We differentiated mouse bone marrow cells to conventional/myeloid DCs or to tolerogenic antigen presenting cells (APCs) by using a glucocorticoid (dexamethasone) or interleukin-10, and assessed the miRNA expression patterns of unstimulated and LPS-stimulated cell populations by array analysis and QPCR. Differentially tolerized mouse APCs convergingly down-regulated a set of miRNA species at either state of activation as compared with the corresponding control DC population (mmu-miR-9-5p, mmu-miR-9-3p, mmu-miR-155-5p). These miRNAs were also upregulated in control DCs in response to stimulation. In contrast, miRNAs that were convergingly upregulated in both tolerized APC groups at stimulated state (mmu-miR-223-3p, mmu-miR-1224-5p) were downregulated in control DCs in response to stimulation. Overexpression of mmu-miR-223-3p in DCs was sufficient to prevent stimulation-associated acquisition of potent T cell stimulatory capacity. Overexpression of mmu-miR-223-3p in a DC line resulted in attenuated expression of known (Cflar, Rasa1, Ras) mRNA targets of this miRNA species shown to affect pathways that control DC activation. Taken together, we identified sets of miRNAs convergingly regulated in differentially tolerized APCs, which may contribute to imprint stimulation-resistant tolerogenic function as demonstrated for mmu-miR-223-3p. Knowledge of miRNAs with protolerogenic function enables immunotherapeutic approaches aimed to modulate immune responses by regulating miRNA expression.

11.
Eur J Med Chem ; 151: 723-739, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29665526

RESUMO

The current work presents the synthesis and biological evaluation of new series of coumarin hydrazide-hydrazone derivatives that showed in vitro broad spectrum antitumor activities against resistant pancreatic carcinoma (Panc-1), hepatocellular carcinoma (HepG2) and leukemia (CCRF) cell lines using doxorubicin as reference standard. Bromocoumarin hydrazide-hydrazone derivative (BCHHD) 11b showed excellent anticancer activity against all tested cancer cell lines. Enzyme assays showed that BCHHD 11b induced apoptosis due to activation of caspases 3/7. Moreover, 11b inhibited GST and CYP3A4 in a dose dependent manner and the induced cell death could be attributed to metabolic inhibition. Moreover, 11b microarray analysis showed significant up- and down-regulation of many genes in the treated cells related to apoptosis, cell cycle, tumor growth and suppressor genes. All of the above presents BCHHD 11b as a potent anticancer agent able to overcome drug resistance. In addition, compound 11b was able to serve as a chemical carrier for 99mTc and the in vivo biodistribution study of 99mTc-11b complex revealed a remarkable targeting ability of 99mTc into solid tumor showing that 99mTc-11b might be used as a promising radiopharmaceutical imaging agent for cancer.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cumarínicos/química , Cumarínicos/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Cumarínicos/síntese química , Cumarínicos/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/síntese química , Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Inibidores do Citocromo P-450 CYP3A/farmacologia , Halogenação , Humanos , Hidrazonas/síntese química , Hidrazonas/farmacocinética , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Distribuição Tecidual
12.
Eur J Med Chem ; 141: 603-614, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29107422

RESUMO

Design and synthesis of new anticancer scaffolds; pyrazolo[3,4-d][1,2,3]triazine derivatives, is a promising solution to overcome drug resistance problem. A series of (E)-2-cyano-N-(aryl)-3-methylthio-3-(substituted-amino)acrylamides 3a-e was synthesized and transformed to the 3-aminopyrazole derivatives 4a-e which were then transformed to the target pyrazolotriazinones 6a-e. All compounds were evaluated for their anticancer activity against three different cancer cell lines namely Huh-7, Panc-1 and CCRF. Compounds 3a, 3c, 6a and 6c showed excellent anticancer activity against Huh-7 cell line (IC50: 4.93-8.84 µM vs doxorubicin 5.43 µM). Similarly, compounds 6a and 6d showed excellent activities against Panc-1 cells (IC50: 9.91 µM and 4.93 µM vs doxorubicin 6.90 µM). Caspase-Glo 3/7 assay was done and the results revealed that the pro-apoptotic activity of the target compounds could be due to the stimulation of caspases 3/7. Microarray experiment for Huh-7 cells treated with 6c was performed to search for other molecular changes. SLC26A3, UGT1A1, UGT2B15, UGT2B7, DNASE1, MUCDH1 and UGT2B17 were among the up-regulated genes, while, GIP3, TAGL, THBS1, IFI27, FSCN1 and SOCS2 were among the most extensively down-regulated genes. These genes belong to apoptosis, metabolism, cell cycle, tumor growth and suppressor genes. Finally, pyrazolo[3,4-d][1,2,3]triazine derivatives could be potent anticancer drugs in the future.


Assuntos
Antineoplásicos/farmacologia , Pirazóis/farmacologia , Triazinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/química , Células Tumorais Cultivadas
13.
Naunyn Schmiedebergs Arch Pharmacol ; 390(10): 1061-1071, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28733879

RESUMO

Cancer refers to a disorder of cell proliferation that leads to tumor production. Cancer is usually treated by surgery, chemotherapeutic drugs, and radiation. Despite the presence of many anticancer drugs, cancer is still an uncontrolled disease and is a major cause of death worldwide. In addition, most anticancer drugs have severe side effects that can limit their use in some patients. This study aims to investigate the possible anticancer activity of two clinically used drugs: a natural antioxidant agent (salicin) and an antihyperlipidemic agent (fenofibrate) against two breast cancer models (in vivo EAC and in vitro MCF7) and the pancreatic cancer cell line (Panc-1).Our results have shown that both salicin and fenofibrate exerted an in vivo anticancer activity as evidenced by the decrease in tumor weight, tumor volume, CEA level, and reduced tumor cholesterol content through an antioxidant (reduced MDA level and increased GSH and catalase content) and an antiinflammatory activity (reduced TNF-∝ level). In addition, both salicin and fenofibrate were shown to be cytotoxic to MCF-7 and Panc-1 cell lines through activation of the caspase 3/7 apoptotic pathway.In conclusion, salicin and fenofibrate are promising anticancer drugs that are already used clinically with acceptable safety profile which can be incorporated into clinical trials to determine their possible application in cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Álcoois Benzílicos/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Fenofibrato/farmacologia , Glucosídeos/farmacologia , Carga Tumoral/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Álcoois Benzílicos/uso terapêutico , Carcinoma de Ehrlich/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Feminino , Fenofibrato/uso terapêutico , Glucosídeos/uso terapêutico , Humanos , Células MCF-7 , Camundongos , Carga Tumoral/fisiologia
14.
Anticancer Agents Med Chem ; 17(7): 1014-1025, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28042776

RESUMO

AIMS: Pyrrole derivatives represent a very interesting class as biologically active compounds. The objective of our study was to investigate the cytotoxic and apoptotic effects and antioxidant activity of the newly synthesized pyrrole derivatives. METHOD: A series of novel pyrroles and fused pyrroles (tetrahydroindoles, pyrrolopyrimidines, pyrrolopyridines and pyrrolotriazines) were synthesized and characterized using IR, 1H NMR, 13C NMR, MS and elemental analysis techniques. The antiproliferative activity of our synthesized compounds and their modulatory effect apoptotic pathway were investigated. The effect on cellular proliferation and viability was monitored by resazurin assay. Apoptotic effect was evaluated by caspase glo 3/7 assay. Synthesized compounds are then tested for their anticancer activities against three different cell lines representing three different tumor types, namely; the HepG-2 (Human hepatocellular liver carcinoma cell line), the human MCF-7 cell line (breast cancer) and the pancreatic resistant Panc-1 cells. RESULT: Compounds Ia-e, IIe, and IXc, d showed a promising anti-cancer activity on all tested cell lines. Antioxidant and wound healing invasion assays were examined for promising anticancer candidate compounds.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pirróis/química , Pirróis/farmacologia , Antineoplásicos/síntese química , Antioxidantes/síntese química , Antioxidantes/química , Antioxidantes/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Pirróis/síntese química , Transdução de Sinais/efeitos dos fármacos
15.
Pharmacogn Mag ; 12(Suppl 3): S293-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27563214

RESUMO

BACKGROUND: Sucrase enzyme inhibitor considered as an oral anti-diabetic therapy that delays the absorption of eaten carbohydrates, reducing the postprandial glucose and insulin peaks to reach normoglycemia. MATERIALS AND METHODS: Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica growing in KSA, followed by in-vitro assay of sucrase enzyme inhibition activity. RESULTS: This investigation led to the isolation of a new remarkable sucrase enzyme inhibitor; 4'-methyl Quercetin-7-O-ß-D-glucuronopyranoside (1) alongside with four known compounds; 2,3-hexahydroxydiphenoyl-(α/ß)-D-(4)C1-glucopyranose (2), Avicularin (3), Castalagin (4) and Quercetin-3-O-glucoside (5). The structure of the new compound (1) was elucidated on the basis of its spectral data, including ESI-MS, UV, (1)H NMR, (13)C NMR, (1)H-(1)H COSY, HSQC, NOESY and HMBC. CONCLUSION: Under the assay conditions, hydroalcoholic extract of A. indica and compounds 1-5 exhibited significant sucrase enzyme inhibitory activity. SUMMARY: Chromatographic fractionation of the hydroalcoholic extract of leaves of Azadirachta indica, led to the Isolation of a new flavonoid glycoside named 4'-methyl Quercetin-7-O-ß-D-glucuronopyranoside, alongside to other 4 known polyphenols. The hydroalcoholic extract as well as the isolated compounds exhibited significant sucrase enzyme inhibitory activity. Abbreviations used: ESI-MS; electrospray ionization-mass spectrometry, UV; ultraviolet, NMR; nuclear magnetic resonance, 1H-1H COSY; 1H-1H correlation spectroscopy, NOESY; nuclear overhauser effect spectroscopy, and HSQC; heteronuclear multiple bond correlation. A. indica; Azadirachta indica.

16.
Asian Pac J Cancer Prev ; 17(7): 3329-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27509972

RESUMO

Cancer is thought to be a direct result of transcriptional misregulation. Broad analysis of transcriptional regulatory elements in healthy and cancer cells is needed to understand cancer development. Nucleases regulatory domains are recruited to bind and manipulate a specific genomic locus with high efficacy and specificity. TALENs (transcription activatorlike effector nuclease) fused to endonuclease FokI have been used widely to target specific sequences to edit several genes in healthy and cancer cells. This approach is promising to target specific cancer genes and for this purpose it is needed to pack such TALENs into viral vectors. There are some considerations which control the success of this approach, targeting appropriate sequences with efficient construction of TALENs being crucial factors. We face some obstacles in construction of TALENs; in this study we made a modification to the method of Cermk et al 2011 and added one step to make it easier and increase the availability of constructs.


Assuntos
Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Endonucleases/genética , Escherichia coli/genética , Vetores Genéticos/genética , Plasmídeos/genética
17.
Acta Pol Pharm ; 73(1): 115-27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27008806

RESUMO

A new series of 6,8-dibromo-2-(4-chlorophenyl)-4-oxo-4H-quinazoline derivatives II-VI were syn- thesized, their chemical structures were confirmed by spectroscopic means and elemental analyses. All these compounds were tested in vitro against human breast cancer cell line (MCF-7) using resazurin reduction assay method and doxorubicin as a reference drug. Most of the tested compounds showed better activity than dox- orubicin. Compound IVh was the best active one, its IC50 is 8.52 µg/mL. Molecular docking studies for the best active compounds IVb, IVc, IVf, IVh and Va were performed on the active site of estrogen receptor α (ERα) subtype to explore the estrogen receptor binding ability of these compounds. All the docked compounds showed good fitting score energy with the active site of ERα subtype and compound IVh showed the best docking score energy(-25.3 kcal/mol). Estrogen binding evaluation assay was performed for the docked compounds to ensure that their activity against MCF7 go through inhibition of ERα, they showed ERα inhibition at 41-85% and compound IVh was the most active one (85%).


Assuntos
Antineoplásicos/síntese química , Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/antagonistas & inibidores , Quinazolinonas/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Desenho de Fármacos , Feminino , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Quinazolinonas/química , Quinazolinonas/farmacologia
18.
Eur J Med Chem ; 76: 539-48, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24607878

RESUMO

Drug resistance is a major impediment for cancer treatment, to overcome it we designed and synthesized sixteen coumarins bearing hydrazide-hydrazone moiety and evaluated them against human drug-resistant pancreatic carcinoma (Panc-1) cells and drug-sensitive (hepatic carcinoma; Hep-G2 and leukemia; CCRF) cell lines in vitro. The 6-brominated coumarin hydrazide-hydrazone derivatives (BCHHD) 7c, 8c and 10c were more potent than doxorubicin (DOX) against resistant Panc-1 cells. BCHHD 7c showed significant cytotoxicity against all tested cells (IC50: 3.60-6.50 µM) on comparison with all other coumarin hydrazide-hydrazone derivatives (CHHD), whereas BCHHD's 8c and 10c showed significant antiproliferative activity only against resistant Panc-1 cells with IC50 of 2.02 µM and 2.15 µM, respectively. All the investigated BCHHD's were able to activate caspases 3/7 and they could induce apoptosis in resistant Panc-1 cells. Microarray analysis showed that BCHHD 7c induced the expression of apoptotic- and cell cycle arrest (G2/M)- genes in resistant Panc-1 cells. Moreover, BCHHD 7c induced the up-regulation of CDKN1A, DDIT4, GDF-15 and down-regulation of CDC2, CDC20, CDK2 genes. Based on our results, we conclude that 7c could be a potent anticancer drug to overcome drug resistance in cancer and it could be highly beneficial for patients in the clinic.


Assuntos
Antineoplásicos/farmacologia , Cumarínicos/química , Hidrazonas/química , Antineoplásicos/química , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas
19.
Chin Med ; 9(1): 4, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24438177

RESUMO

BACKGROUND: Bupleurum marginatum Wall. ex DC (Apiaceae) is a perennial herb widely used in traditional Chinese and Kampo medicine for the treatment of various infectious diseases. The biological activities of B. marginatum have not been fully investigated. This study aims to investigate the antitrypanosomal, antimicrobial and antiviral activities of methanol (ME) and dichloromethane (DCM) extracts of B. marginatum aerial parts and the ability of both extracts to inhibit the growth of different cancer cell lines. METHODS: Phytochemical characterization of the extracts was performed by LC-MS profiling. The antitrypanosomal activity was evaluated using the resazurin method. The antimicrobial activity was assessed using agar diffusion and microdilution methods, and the minimum inhibitory concentration (MIC) values were determined. The antiviral activity was determined for 6.25, 12.5, and 50 µg/mL doses using a plaque reduction assay. Cytotoxicity was investigated in eight cancer cell lines (Caco-2, CCL-81, CCRF-CEM, COS-7, HL-60, MIA PaCa-2, MCF-7, and PANC-1) using the MTT assay and the caspase 3/7 activity was determined over the range of 62.5-1000 µg/mL. RESULTS: Phytochemical analyses resulted in the characterization of 15 components, mainly flavonoids and lignans. The DCM extract showed significant antitrypanosomal activity (IC50: 36.21 µg/mL) and moderate activity against Streptococcus pyogenes (MIC value: 0.25 mg/mL). At a dose of 12.5 µg/mL, the DCM extract inhibited 73.6% of the plaque production by hepatitis A virus. CCRF-CEM cells were the most sensitive to both extracts (IC50: 12.5-22.7 µg/mL). The cytotoxicity was mediated by induction of apoptosis (19-fold increase in the cellular caspase 3/7 level after treatment with the DCM extract at 1 mg/mL). CONCLUSIONS: ME and DCM extract of B. marginatum showed anti-infective and antiproliferative effects.

20.
Arch Pharm (Weinheim) ; 346(8): 610-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23873839

RESUMO

Three novel series of 6,8-dibromo-4(3H)quinazolinone derivatives were synthesized. Some of the novel quinazolinone derivatives were tested for their antitumor activity against the human breast carcinoma cell line MCF-7. Compounds XIIIb, IX, XIVd, XIVb, XIVe, XIIIa, XIVc, XVc, and XIVa exerted powerful cytotoxic effects against the MCF7 cells, with very low IC50 values compared to doxorubicin (positive control). The IC50 values were 1.7, 1.8, 1.83, 5.4, 6.84, 10.8, 13.9, 15.7, and 29.6 µg/mL, respectively.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Quinazolinonas/síntese química , Quinazolinonas/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Feminino , Humanos , Concentração Inibidora 50 , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...