Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(4): 1809-1816, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38173319

RESUMO

The development of low-cost earth-abundant electrocatalysts to produce ammonia (NH3) with high efficiency for the nitrogen (N2) reduction reaction (NRR) remains challenging. Herein, we propose the development of highly efficient ultrathin nitrogen-vacancy-rich molybdenum nitride nanosheets (MoN-NV) for NRR using basic electrolytes under ambient conditions. In 0.1 M KOH, this catalyst attained a high faradaic efficiency (FE) of ∼14% with an NH3 yield of 22.5 µg h-1 mg-1cat at -0.3 V vs. a reversible hydrogen electrode under ambient conditions. The characterization results and electrochemical studies disclosed that nitrogen vacancies in the MoN-NV nanosheets played a critical role in the enhanced electrocatalytic activity for NRR. Furthermore, the recycling tests confirmed the stability of the catalyst during NRR electrolysis.

2.
ACS Omega ; 8(44): 41064-41076, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37970001

RESUMO

Heterogeneous growth of photocatalysts on different porous substrates is a solution to avoid secondary pollution caused by composite photocatalysts themselves. However, the heterogeneous growth of composite photocatalysts with nitrogen-doped carbon quantum dots (NCQDs) inclusions-introduced during synthesis-impedes the direct growth on the substrate. To overcome this problem, NCQDs were grown on a Co9S8 (NCQDs-G@Co9S8) layer, decorated on cotton fabric. This optimal coupling mode of NCQDs and Co9S8 showed 54% degradation, compared to 33% dye degradation via NCQDs-doped Co9S8 (NCQDs-D@Co9S8). The change in the crystal structure and its lower loading on fabric results in significantly lower performance of NCQDs-D@Co9S8. Even with the combination of both surface growth and doping (NCQDs-DG@Co9S8), the performance was still limited to 42%. In addition, the optimum growth concentration of NCQDs on Co9S8 was observed for 7.5 w/w %, resulting in 92% photocatalytic activity (PCA) in 80 min. Comparing different surface states formed in NCQDs using different solvents, water-based surface states (oxygen-rich surface) are most suitable for the dye degradation. NCQDs-G@Co9S8 also offers 67% Cr-VI reduction to Cr-III, showing its suitability for both inorganic and organic compounds. Better electrode performance was related to suitable charge separation of the composite, where -OH groups mainly contribute in the photocatalytic dye degradation..

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA