Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338775

RESUMO

Toll-like receptor 2 (TLR2) is a major membrane-bound receptor with ligand and species specificity that activates the host immune response. Heterodimerization of TLR2 with TLR1 (TLR2/1) or TLR6 (TLR2/6), triggered by ligand binding, is essential to initiating the signaling pathway. Bovine TLR2 (bTLR2) heterodimerization has not been defined yet compared with human and mouse TLR2s (hTLR2 and mTLR2). The aim of the present study was to model bovine TLRs (TLRs 1, 2 and 6) and create the heterodimeric forms of the bovine TLR2 using molecular dynamics (MD) simulations. We compared the intermolecular interactions in bTLR2/1-PAM3 and bTLR2/6-PAM2 with the hTLR2 and mTLR2 complexes through docking simulations and subsequent MD analyses. The present computational findings showed that bTLR2 dimerization could have a biological function and activate the immune response, similar to hTLR2 and mTLR2. Agonists and antagonists that are designed for hTLR2 and mTLR2 can target bTLR2. However, the experimental approaches to comparing the functional immune response of TLR2 across species were missing in the present study. This computational study provides a structural analysis of the bTLR2 interaction with bTLR1 and bTLR6 in the presence of an agonist/antagonist and reveals the three-dimensional structure of bTLR2 dimerization. The present findings could guide future experimental studies targeting bTLR2 with different ligands and lipopeptides.


Assuntos
Simulação de Dinâmica Molecular , Receptor 2 Toll-Like , Animais , Bovinos , Dimerização , Ligantes , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo
2.
Front Endocrinol (Lausanne) ; 14: 1134868, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234812

RESUMO

Recently, we reported that sperm induce cluster of differentiation 44 (CD44) expression and Toll-like receptor 2 (TLR2)-mediated inflammatory response in bovine uterus. In the present study, we hypothesized that the interaction between CD44 of bovine endometrial epithelial cells (BEECs) and hyaluronan (HA) affects sperm attachment and thereby enhancing TLR2-mediated inflammation. To test our hypothesis, at first, in-silico approaches were employed to define the binding affinity of HA for CD44 and TLR2. Further, an in-vitro experiment using the sperm-BEECs co-culture model was applied to investigate the effect of HA on sperm attachment and inflammatory response. Here, low molecular weight (LMW) HA at different concentrations (0, 0.1, 1, or 10 µg/mL) was incubated with BEECs for 2 h followed by the co-culture without- or with non-capacitated washed sperm (106/ml) for additional 3 h was performed. The present in-silico model clarified that CD44 is a high-affinity receptor for HA. Moreover, TLR2 interactions with HA oligomer (4- and 8-mers) target a different subdomain (h-bonds) compared to TLR2-agonist (PAM3) which targets a central hydrophobic pocket. However, the interaction of LMW HA (32-mers) with TLR2 revealed no stability of HA at any pocket of TLR2. Notably, the immunofluorescence analysis revealed the HA localization in both endometrial stroma and epithelia of ex-vivo endometrial explant. Moreover, ELISA showed significant levels of HA in BEECs culture media. Importantly, BEECs pretreatment with HA prior to sperm exposure increased the number of attached sperm to BEECs, and upregulated the transcriptional levels of pro-inflammatory genes (TNFA, IL-1B, IL-8, and PGES) in BEECs in response to sperm. However, BEECs treated with HA only (no sperm exposure) did not show any significant effect on the transcript abundance of pro-inflammatory genes when compared to the non-treated BEECs. Altogether, our findings strongly suggest a possible cross-talk between sperm and endometrial epithelial cells via HA and HA binding receptors (CD44 and TLR2) to induce a pro-inflammatory response in bovine uterus.


Assuntos
Ácido Hialurônico , Receptor 2 Toll-Like , Feminino , Animais , Bovinos , Ácido Hialurônico/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Células Epiteliais/metabolismo , Endométrio/metabolismo
3.
Front Immunol ; 14: 1158090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180107

RESUMO

Toll-like receptor 2 (TLR2) signaling pathway is involved in the sperm-triggered uterine inflammatory response at insemination, but its precise mechanism at molecular-level remains unknown. According to the ligand specificity, TLR2 forms a heterodimer with TLR1 or TLR6 as an initial step to mediate intracellular signaling, leading to a specific type of immune response. Hence, the present study aimed to identify the active TLR2 heterodimer (TLR2/1 or TLR2/6) that is involved in sperm-uterine immune crosstalk in bovine using various models. First, in-vitro (bovine endometrial epithelial cells, BEECs) and ex-vivo (bovine uterine explant) models were employed to test different TLR2 dimerization pathways in endometrial epithelia after exposure to sperm or TLR2 agonists; PAM3 (TLR2/1 agonist), and PAM2 (TLR2/6 agonist). Additionally, in-silico approaches were performed to confirm the dimer stability using de novo protein structure prediction model for bovine TLRs. The in-vitro approach revealed that sperm triggered the mRNA and protein expression of TLR1 and TLR2 but not TLR6 in BEECs. Moreover, this model disclosed that activation of TLR2/6 heterodimer, triggers a much stronger inflammatory response than TLR2/1 and sperm in bovine uterine epithelia. In the ex-vivo model that mimics the intact uterine tissue at insemination, sperm also induced the protein expression of both TLR1 and TLR2, but not TLR6, in bovine endometrium, particularly in uterine glands. Importantly, PAM3 and sperm induced similar and low mRNA expression of pro-inflammatory cytokines and TNFA protein to a lesser extent than PAM2 in endometrial epithelia. This implied that sperm might trigger a weak inflammatory response via TLR2/TLR1 activation which is similar to that of PAM3. Additionally, the in-silico analyses showed that the existence of bridging ligands is essential for heterodimer stability in bovine TLR2 with either TLR1 or TLR6. Altogether, the present findings revealed that sperm utilize TLR2/1, but not TLR2/6, heterodimerization to trigger a weak physiological inflammatory response in the bovine uterus. This might be the way to remove excess dead sperm remaining in the uterine lumen without tissue damage for providing an ideal uterine environment for early embryo reception and implantation.


Assuntos
Receptor 1 Toll-Like , Receptor 2 Toll-Like , Feminino , Masculino , Animais , Bovinos , Receptor 2 Toll-Like/metabolismo , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/metabolismo , Dimerização , Receptor 6 Toll-Like/metabolismo , Sêmen/metabolismo , Endométrio/metabolismo , Ligantes , Espermatozoides/metabolismo , RNA Mensageiro/metabolismo
4.
Front Immunol ; 14: 1319572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179051

RESUMO

It is known that sperm and seminal plasma (SP) affect uterine immunity. In cattle, artificial insemination enables breeding by depositing frozen and largely diluted sperm with a negligible amount of SP into the uterus. Thus, the present study focused on the impact of frozen-thawed sperm on bovine uterine immunity. We have previously shown that in the bovine uterus, sperm swim smoothly over the luminal epithelium and some sperm interact with uterine glands to induce a weak inflammatory response mainly via the endometrial Toll-like receptor 2 (TLR2) signaling. However, the process by which sperm is encountered in the uterine glands is not completely clear. The present study intended to evaluate the role of sperm-TLR2 in sperm-uterine mucus penetration for reaching the glandular epithelium to induce the uterine immune response. To activate and block sperm-TLR2, they were treated with TLR2 agonist and antagonist, respectively. TLR2 activation enhanced sperm hyperactivation and improved its capacity to penetrate the artificial viscoelastic fluid and estrous-uterine-mucus. In contrast, TLR2-blocked sperm showed completely opposite effects. It is noteworthy, that the TLR2-activated sperm that penetrated the uterine mucus exhibited increased motile activity with hyperactivation. In the sperm-endometrial ex-vivo model, a greater amount of TLR2-activated sperm entered the uterine glands with an immune response, which was seen as the upregulation of mRNA expression for TNFA, IL1B, IL8, PGES, and TLR2 similar to those in control sperm. On the other hand, a lesser amount of TLR2-blocked sperm entered the uterine glands and weakened the sperm-induced increase only in PGES, suggesting that penetration of a certain number of sperm in the uterine gland is necessary enough to trigger the inflammatory response. Altogether, the present findings indicate that activation of sperm-TLR2 promotes their hyperactivation and mucus penetration with greater motility, allowing them to enter into the uterine glands more. This further suggests that the hyperactivated sperm contributes to triggering the pro-inflammatory cascade partly via TLR2 in the uterus.


Assuntos
Sêmen , Receptor 2 Toll-Like , Feminino , Bovinos , Masculino , Animais , Receptor 2 Toll-Like/metabolismo , Muco/fisiologia , Espermatozoides/metabolismo , Útero/metabolismo
5.
Animals (Basel) ; 12(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35049767

RESUMO

Two prostanglandins (luprostiol, LUP, and dinoprost, DIN) and two ovulation-inducing agents (human Chorionic Gonadotropin, hCG, and deslorelin, DES) were evaluated for luteolysis and estrus induction, and for ovulation induction, respectively, in embryo donor jennies. Twenty-six fertile Andalusian jennies were used. In Experiment 1, jennies (n = 112 cycles) were randomly treated with either LUP or DIN after embryo flushing. In Experiment 2, donors (n = 84 cycles) were randomly treated with either hCG or DES to induce ovulation. No differences were found between prostaglandins for all variables studied (prostaglandin-ovulation interval (POI), interovulatory interval (IOI), embryo recovery rate (ERR), positive flushing rate (PFR) and embryo grade (EG)). The ovulation rate was similar for hCG and DES (60.9% vs. 78.7%). However, the interval to ovulation (ITO) was affected (62.61 ± 7.20 vs. 48.79 ± 2.69 h). None of the other variables studied (ERR, PFR and EG) were affected (p > 0.05), except for embryo quality (p = 0.009). In short, both prostaglandins evaluated are adequate to induce luteolysis and estrus. Both ovulation-inducing agents hastened ovulation, but DES seems to be more effective than hCG. Follicular diameter affected the interval from treatment to ovulation, and high uterine edema was related to low embryo quality.

7.
Histol Histopathol ; 35(6): 589-597, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31621887

RESUMO

Previously, we reported that polymorphonuclear neutrophils (PMNs) are constantly existent in the bovine oviduct fluid during the pre-ovulatory stage under physiological conditions. Moreover, incubation of PMNs with bovine oviduct epithelial cells-conditioned medium (BOEC-CM) resulted in suppression of their phagocytic activity for sperm. During pathophysiological conditions, cows may be inseminated by infected semen which exposes oviductal PMNs to allogenic sperm simultaneously with pathogens. This study aimed to visually investigate the role of oviduct epithelium in regulating the phagocytic behavior of PMNs toward sperm as a physiological stimulus, with Escherichia coli (E. coli) as a pathological stimulus. In our experiment, PMNs were incubated for 2 h in BOEC-CM. Phagocytosis was then assayed by co-incubation of these PMNs either with sperm, E. coli, or latex beads. BOEC-CM significantly suppressed the direct phagocytosis of PMNs for sperm, but did not affect their phagocytic activity for E. coli or latex beads. Additionally, an investigation with scanning electron microscopy revealed that BOEC-CM suppressed the formation of DNA-based neutrophil extracellular traps (NETs) for sperm entanglement. BOEC-CM did not alter NETs formation towards E. coli. A quantification of NETs formation using an immunofluorescence microscopy showed that the areas of NETs formation for E. coli were significantly larger than those formed for sperm. Our data clearly show that the bovine oviduct, through secretions, protects sperm from phagocytosis by PMNs and eliminates bacterial dissemination through maintaining the phagocytic activity of PMNs towards bacteria.


Assuntos
Armadilhas Extracelulares , Neutrófilos/imunologia , Oviductos/imunologia , Fagocitose , Animais , Bovinos , Células Epiteliais/imunologia , Escherichia coli/imunologia , Armadilhas Extracelulares/microbiologia , Armadilhas Extracelulares/fisiologia , Feminino , Masculino , Microscopia Eletrônica de Varredura , Espermatozoides/imunologia
8.
PLoS One ; 11(9): e0162309, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27662642

RESUMO

Sperm are allogenic to the female genital tract; however, oviducts provide optimal conditions for survival and capacitation of these non-self cells until fertilization. Recently, we showed that oviduct-conditioned media and prostaglandin E2 (PGE2) suppress sperm phagocytosis by polymorphonuclear neutrophils (PMNs) under physiological conditions. We hypothesized that sperm binding to bovine oviduct epithelial cells (BOECs) could change the local innate immunity via PGE2. As the first step to obtain basic information, sub-confluent BOEC monolayers were co-cultured with swim-up sperm for 2 h. BOECs with viable bound sperm were cultured for an additional 3, 6, 12, or 24 h. Then, we confirmed the impact of the sperm-BOEC binding on both BOECs and PMN gene expression. Immunohistochemistry revealed that BOECs strongly express TGFB1 and IL10 in the oviduct. Sperm binding to BOECs in culture induced the anti-inflammatory cytokines (TGFB1 and IL10) and PGE2 production by BOECs. Exogenous PGE2 in vitro suppressed pro-inflammatory cytokine expression (TNF and IL1B) in BOECs. Moreover, pre-exposure of PMNs to BOEC-conditioned media suppressed the TNF expression, but the BOEC media co-cultured with sperm stimulated PMNs to express TGFB1 and IL10, with increasing PGE2 secretion. Of note, exogenous PGE2 led PMNs in vitro to decrease their TNF expression and increase anti-inflammatory cytokines expression. Our findings strongly suggest that BOECs provide an anti-inflammatory environment under physiological conditions and the sperm-BOEC binding further strengthens this milieu thus suppresses PMNs in the bovine oviduct. PGE2 is likely to drive this stable anti-inflammatory environment in the oviduct.

9.
Mol Reprod Dev ; 83(7): 630-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27345329

RESUMO

This study aimed to investigate the possible effects of the vasoactive peptide angiotensin II (ANG II), secreted by bovine oviduct epithelial cells, on the in vitro phagocytic activity of polymorphonuclear leukocytes, specifically neutrophils, towards sperm. The measured concentrations of ANG II in oviduct flushes and conditioned medium from primary bovine oviduct epithelial culture ranged from 10(-10) to 10(-11) M. In our experiments, neutrophils were incubated for 2 hr with ANG II (0, 10(-11) , 10(-10) , 10(-9) , and 10(-8) M). Phagocytosis and superoxide production were then assessed by co-incubation of these neutrophils with sperm pretreated to induce capacitation, revealing a dose-dependent increase in both metrics by ANG II. This stimulatory effect of ANG II was eliminated by losartan, an angiotensin receptor type 1 (AGTR1) antagonist. ANG II also suppressed neutrophil transcription of angiotensin converting enzyme-1 (ACE) and AGTR1, but not AGTR2, suggesting the involvement of the AGTR1 receptor-mediated pathway in the response to sperm. Scanning electron microscopy further revealed that incubation of neutrophils with ANG II stimulated the formation of DNA-based extracellular traps for sperm entanglement. The addition of prostaglandin E2 at concentrations found in the oviduct suppressed the ANG II-stimulated phagocytic activity of neutrophils towards sperm. Thus the physiological levels of ANG II stimulate neutrophil phagocytosis of sperm in vitro, and suggest that an angiotensin/prostaglandin E2 system may fine-tune the local immune response that fosters sperm survival in the bovine oviduct. Mol. Reprod. Dev. 83: 630-639, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Angiotensina II/metabolismo , Células Epiteliais/metabolismo , Neutrófilos/metabolismo , Oviductos/metabolismo , Fagocitose , Espermatozoides , Animais , Bovinos , Células Epiteliais/citologia , Armadilhas Extracelulares/metabolismo , Feminino , Losartan/farmacologia , Masculino , Oviductos/citologia , Peptidil Dipeptidase A/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Superóxidos/metabolismo
10.
J Reprod Dev ; 62(2): 151-7, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26781611

RESUMO

The oviduct is an active contractile tube that provides the proper environment for sperm transport, capacitation and survival. Oviductal contractions are regulated by autocrine/paracrine secretion of several factors, such as prostaglandins (PGs) and endothelin-1 (EDN-1). We have previously shown that during the preovulatory stage, sperm are exposed to polymorphonuclear neutrophils (PMNs) in the bovine oviduct, and the bovine oviduct epithelial cells (BOECs) secrete molecules including PGE2 that suppress sperm phagocytosis by PMNs in vitro. In this study, we investigated the possible effects of EDN-1 on the phagocytic activity of PMNs toward sperm. The local concentrations of EDN-1 in oviduct fluid and BOEC culture medium ranged from 10(-10) to 10(-11) M as determined by EIA. Phagocytosis and superoxide production were assayed by co-incubation of sperm pretreated to induce capacitation with PMNs exposed to EDN-1 (0, 10(-11), 10(-10), 10(-9), and 10(-8) M) for 2 h. EDN-1 suppressed dose dependently (10(-11) to 10(-8) M) the phagocytic activity for sperm and superoxide production of PMNs in response to capacitated sperm. Moreover, this suppression was eliminated by an ETB receptor antagonist (BQ-788). EDN-1 suppressed mRNA expression of EDN-1 and ETB but not ETA receptors in PMNs, suggesting the ETB receptor-mediated pathway. Scanning electron microscopic observation revealed that incubation of PMNs with EDN-1 (10(-9) M) completely suppressed the formation of DNA-based neutrophil extracellular traps for sperm entanglement. The results provide evidence indicating that EDN-1 may be involved in the protection of sperm from phagocytosis by PMNs in the bovine oviduct, supporting sperm survival until fertilization.


Assuntos
Endotelina-1/fisiologia , Neutrófilos/citologia , Oviductos/fisiologia , Fagocitose , Espermatozoides/citologia , Animais , Bovinos , Meios de Cultura/química , Regulação para Baixo , Antagonistas do Receptor de Endotelina B/farmacologia , Feminino , Fertilização , Masculino , Microscopia Eletrônica de Varredura , Oligopeptídeos/química , Piperidinas/química , RNA Mensageiro/metabolismo , Receptor de Endotelina B/fisiologia , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...