Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2310044121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38446857

RESUMO

We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 tesla arterial spin labeling (ASL) data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and already detectable with 50 perfusion-weighted images per subject, acquired in 5 min. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometric properties, macrovasculature, and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterizing hippocampal perfusion.


Assuntos
Artérias , Benchmarking , Perfusão , Hipocampo/diagnóstico por imagem , Imageamento por Ressonância Magnética
2.
bioRxiv ; 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37503042

RESUMO

We present a comprehensive study on the non-invasive measurement of hippocampal perfusion. Using high-resolution 7 Tesla arterial spin labelling data, we generated robust perfusion maps and observed significant variations in perfusion among hippocampal subfields, with CA1 exhibiting the lowest perfusion levels. Notably, these perfusion differences were robust and detectable even within five minutes and just fifty perfusion-weighted images per subject. To understand the underlying factors, we examined the influence of image quality metrics, various tissue microstructure and morphometry properties, macrovasculature and cytoarchitecture. We observed higher perfusion in regions located closer to arteries, demonstrating the influence of vascular proximity on hippocampal perfusion. Moreover, ex vivo cytoarchitectonic features based on neuronal density differences appeared to correlate stronger with hippocampal perfusion than morphometric measures like gray matter thickness. These findings emphasize the interplay between microvasculature, macrovasculature, and metabolic demand in shaping hippocampal perfusion. Our study expands the current understanding of hippocampal physiology and its relevance to neurological disorders. By providing in vivo evidence of perfusion differences between hippocampal subfields, our findings have implications for diagnosis and potential therapeutic interventions. In conclusion, our study provides a valuable resource for extensively characterising hippocampal perfusion.

3.
Elife ; 112022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36519725

RESUMO

Like neocortical structures, the archicortical hippocampus differs in its folding patterns across individuals. Here, we present an automated and robust BIDS-App, HippUnfold, for defining and indexing individual-specific hippocampal folding in MRI, analogous to popular tools used in neocortical reconstruction. Such tailoring is critical for inter-individual alignment, with topology serving as the basis for homology. This topological framework enables qualitatively new analyses of morphological and laminar structure in the hippocampus or its subfields. It is critical for refining current neuroimaging analyses at a meso- as well as micro-scale. HippUnfold uses state-of-the-art deep learning combined with previously developed topological constraints to generate uniquely folded surfaces to fit a given subject's hippocampal conformation. It is designed to work with commonly employed sub-millimetric MRI acquisitions, with possible extension to microscopic resolution. In this paper, we describe the power of HippUnfold in feature extraction, and highlight its unique value compared to several extant hippocampal subfield analysis methods.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Humanos , Hipocampo/diagnóstico por imagem , Hipocampo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
5.
ACS Macro Lett ; 9(3): 431-437, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35648548

RESUMO

Poly(lactic-co-glycolic acid) (PLGA) is a versatile synthetic copolymer that is widely used in pharmaceutical applications. This is because it is well-tolerated in the body, and copolymers of varying physicochemical properties are readily available via ring-opening polymerization. However, native PLGA polymers are hard to track as drug delivery carriers when delivered to subcellular spaces, due to the absence of an easily accessible "handle" for fluorescent labeling. Here we show a one-step, scalable, solvent-free, synthetic route to fluorescent blue (2-aminoanthracene), green (5-aminofluorescein), and red (rhodamine-6G) PLGA, in which every polymer chain in the sample is fluorescently labeled. The utility of initiator-labeled PLGA was demonstrated through the preparation of nanoparticles, capable of therapeutic subcellular delivery to T-helper-precursor-1 (THP-1) macrophages, a model cell line for determining in vitro biocompatibility and particle uptake. Super resolution confocal fluorescence microscopy imaging showed that dye-initiated PLGA nanoparticles were internalized to punctate regions and retained bright fluorescence over at least 24 h. In comparison, PLGA nanoparticles with 5-aminofluorescein introduced by conventional nanoprecipitation/encapsulation showed diffuse and much lower fluorescence intensity in the same cells and over the same time periods. The utility of this approach for in vitro drug delivery experiments was demonstrated through the concurrent imaging of the fluorescent drug doxorubicin (λex = 480 nm, λem = 590 nm) with carrier 5-aminofluorescein PLGA, also in THP-1 cells, in which the intracellular locations of the drug and the polymer could be clearly visualized. Finally, the dye-labeled particles were evaluated in an in vivo model, via delivery to the nematode Caenorhabditis elegans, with bright fluorescence again apparent in the internal tract after 3 h. The results presented in this manuscript highlight the ease of synthesis of highly fluorescent PLGA, which could be used to augment tracking of future therapeutics and accelerate in vitro and in vivo characterization of delivery systems prior to clinical translation.

6.
Drug Metab Dispos ; 47(8): 832-842, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31123035

RESUMO

Organic anion transporting polypeptide 2B1 (OATP2B1) is a widely expressed membrane transporter with diverse substrate specificity. In vitro and clinical studies suggest a role for intestinal OATP2B1 in the oral absorption of medications. Moreover, OATP2B1 is highly expressed in hepatocytes where it is thought to promote liver drug clearance. However, until now, a shortcoming of studies implicating OATP2B1 in drug disposition has been a lack of in vivo models. Here, we report the development of a knockout (KO) mouse model with targeted, global disruption of the Slco2b1 gene to examine the disposition of two confirmed mOATP2B1 substrates, namely, fexofenadine and rosuvastatin. The plasma pharmacokinetics of intravenously administered fexofenadine was not different between KO and wild-type (WT) mice. However, after oral fexofenadine administration, KO mice had 70% and 41% lower maximal plasma concentration (C max) and area under the plasma concentration-time curve (AUC0-last) than WT mice, respectively. In WT mice, coadministration of fexofenadine with grapefruit juice (GFJ) or apple juice (AJ) was associated with reduced C max by 80% and 88%, respectively, while the AUC0-last values were lower by 35% and 70%, respectively. In KO mice, AJ coadministration reduced oral fexofenadine C max and AUC0-last values by 67% and 59%, respectively, while GFJ had no effects. Intravenous and oral rosuvastatin pharmacokinetics were similar among WT and KO mice. We conclude that intestinal OATP2B1 is a determinant of oral fexofenadine absorption, as well as a target for fruit juice interactions. OATP2B1 does not significantly influence rosuvastatin disposition in mice. SIGNIFICANCE STATEMENT: A novel mouse model with targeted disruption of the Slco2b1 gene revealed that OATP2B1 is a determinant of oral absorption but not systemic disposition of fexofenadine, as well as a target of fruit juice interactions. Rosuvastatin oral and intravenous pharmacokinetics were not dependent on OATP2B1. These findings support the utility of the Slco2b1 KO mouse model for defining mechanisms of drug disposition at the intersection of in vitro and clinical pharmacology.


Assuntos
Mucosa Intestinal/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Rosuvastatina Cálcica/farmacocinética , Terfenadina/análogos & derivados , Administração Intravenosa , Administração Oral , Animais , Área Sob a Curva , Interações Alimento-Droga , Sucos de Frutas e Vegetais , Células HEK293 , Células HeLa , Humanos , Absorção Intestinal , Masculino , Camundongos , Camundongos Knockout , Transportadores de Ânions Orgânicos/genética , Rosuvastatina Cálcica/administração & dosagem , Terfenadina/administração & dosagem , Terfenadina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...