Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 14(20): 9050-9082, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37740352

RESUMO

The study of all chemical processes involving metabolites is known as metabolomics. It has been developed into an essential tool in several disciplines, such as the study of plant physiology, drug development, human diseases, and nutrition. The field of food science, diagnostic biomarker research, etiological analysis in the field of medical therapy, and raw material quality, processing, and safety have all benefited from the use of metabolomics recently. Food metabolomics includes the use of metabolomics in food production, processing, and human diets. As a result of changing consumer habits and the rising of food industries all over the world, there is a remarkable increase in interest in food quality and safety. It requires the employment of various technologies for the food supply chain, processing of food, and even plant breeding. This can be achieved by understanding the metabolome of food, including its biochemistry and composition. Additionally, Food metabolomics can be used to determine the similarities and differences across crop kinds, as an indicator for tracking the process of ripening to increase crops' shelf life and attractiveness, and identifying metabolites linked to pathways responsible for postharvest disorders. Moreover, nutritional metabolomics is used to investigate the connection between diet and human health through detection of certain biomarkers. This review assessed and compiled literature on food metabolomics research with an emphasis on metabolite extraction, detection, and data processing as well as its applications to the study of food nutrition, food-based illness, and phytochemical analysis. Several studies have been published on the applications of metabolomics in food but further research concerning the use of standard reproducible procedures must be done. The results published showed promising uses in the food industry in many areas such as food production, processing, and human diets. Finally, metabolome-wide association studies (MWASs) could also be a useful predictor to detect the connection between certain diseases and low molecular weight biomarkers.

2.
Antioxidants (Basel) ; 10(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34942963

RESUMO

The olive tree is a venerable Mediterranean plant and often used in traditional medicine. The main aim of the present study was to evaluate the effect of Olea europaea L. cv. Arbosana leaf extract (OLE) and its encapsulation within a spanlastic dosage form on the improvement of its pro-oxidant and antiproliferative activity against HepG-2, MCF-7, and Caco-2 human cancer cell lines. The LC-HRESIMS-assisted metabolomic profile of OLE putatively annotated 20 major metabolites and showed considerable in vitro antiproliferative activity against HepG-2, MCF-7, and Caco-2 cell lines with IC50 values of 9.2 ± 0.8, 7.1 ± 0.9, and 6.5 ± 0.7 µg/mL, respectively. The encapsulation of OLE within a (spanlastic) nanocarrier system, using a spraying method and Span 40 and Tween 80 (4:1 molar ratio), was successfully carried out (size 41 ± 2.4 nm, zeta potential 13.6 ± 2.5, and EE 61.43 ± 2.03%). OLE showed enhanced thermal stability, and an improved in vitro antiproliferative effect against HepG-2, MCF-7, and Caco-2 (IC50 3.6 ± 0.2, 2.3 ± 0.1, and 1.8 ± 0.1 µg/mL, respectively) in comparison to the unprocessed extract. Both preparations were found to exhibit pro-oxidant potential inside the cancer cells, through the potential inhibitory activity of OLE against glutathione reductase and superoxide dismutase (IC50 1.18 ± 0.12 and 2.33 ± 0.19 µg/mL, respectively). These inhibitory activities were proposed via a comprehensive in silico study to be linked to the presence of certain compounds in OLE. Consequently, we assume that formulating such a herbal extract within a suitable nanocarrier would be a promising improvement of its therapeutic potential.

3.
Antibiotics (Basel) ; 10(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34356745

RESUMO

SARS-CoV-2 (COVID-19), a novel coronavirus causing life-threatening pneumonia, caused a pandemic starting in 2019 and caused unprecedented economic and health crises all over the globe. This requires the rapid discovery of anti-SARS-CoV-2 drug candidates to overcome this life-threatening pandemic. Strawberry (Fragaria ananassa Duch.) and ginger (Zingiber officinale) methanolic extracts were used for silver nanoparticle (AgNPs) synthesis to explore their SARS-CoV-2 inhibitory potential. Moreover, an in silico study was performed to explore the possible chemical compounds that might be responsible for the anti-SARS-CoV-2 potential. The characterization of the green synthesized AgNPs was carried out with transmission electron microscope (TEM), Fourier-transform infrared, spectroscopy ultraviolet-visible spectroscopy, zeta potential, and a dynamic light-scattering technique. The metabolic profiling of strawberry and ginger methanolic extract was assessed using liquid chromatography coupled with high-resolution mass spectrometry. The antiviral potential against SARS-CoV-2 was evaluated using an MTT assay. Moreover, in silico modeling and the molecular dynamic study were conducted via AutoDock Vina to demonstrate the potential of the dereplicated compounds to bind to some of the SARS-CoV-2 proteins. The TEM analysis of strawberry and ginger AgNPs showed spherical nanoparticles with mean sizes of 5.89 nm and 5.77 nm for strawberry and ginger, respectively. The UV-Visible spectrophotometric analysis showed an absorption peak at λmax of 400 nm for strawberry AgNPs and 405 nm for ginger AgNPs. The Zeta potential values of the AgNPs of the methanolic extract of strawberry was -39.4 mV, while for AgNPs of ginger methanolic extract it was -42.6 mV, which indicates a high stability of the biosynthesized nanoparticles. The strawberry methanolic extract and the green synthesized AgNPs of ginger showed the highest antiviral activity against SARS-CoV-2. Dereplication of the secondary metabolites from the crude methanolic extracts of strawberry and ginger resulted in the annotation of different classes of compounds including phenolic, flavonoids, fatty acids, sesquiterpenes, triterpenes, sterols, and others. The docking study was able to predict the different patterns of interaction between the different compounds of strawberry and ginger with seven SARS-CoV-2 protein targets including five viral proteins (Mpro, ADP ribose phosphatase, NSP14, NSP16, PLpro) and two humans (AAK1, Cathepsin L). The molecular docking and dynamics simulation study showed that neohesperidin demonstrated the potential to bind to both human AAK1 protein and SARS-CoV-2 NSP16 protein, which makes this compound of special interest as a potential dual inhibitor. Overall, the present study provides promise for Anti-SARS-CoV-2 green synthesized AgNPs, which could be developed in the future into a new anti-SARS-CoV-2 drug.

4.
Antibiotics (Basel) ; 10(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066998

RESUMO

Since the emergence of the SARS-CoV-2 pandemic in 2019, it has remained a significant global threat, especially with the newly evolved variants. Despite the presence of different COVID-19 vaccines, the discovery of proper antiviral therapeutics is an urgent necessity. Nature is considered as a historical trove for drug discovery, especially in global crises. During our efforts to discover potential anti-SARS CoV-2 natural therapeutics, screening our in-house natural products and plant crude extracts library led to the identification of C. benedictus extract as a promising candidate. To find out the main chemical constituents responsible for the extract's antiviral activity, we utilized recently reported SARS CoV-2 structural information in comprehensive in silico investigations (e.g., ensemble docking and physics-based molecular modeling). As a result, we constructed protein-protein and protein-compound interaction networks that suggest cnicin as the most promising anti-SARS CoV-2 hit that might inhibit viral multi-targets. The subsequent in vitro validation confirmed that cnicin could impede the viral replication of SARS CoV-2 in a dose-dependent manner, with an IC50 value of 1.18 µg/mL. Furthermore, drug-like property calculations strongly recommended cnicin for further in vivo and clinical experiments. The present investigation highlighted natural products as crucial and readily available sources for developing antiviral therapeutics. Additionally, it revealed the key contributions of bioinformatics and computer-aided modeling tools in accelerating the discovery rate of potential therapeutics, particularly in emergency times like the current COVID-19 pandemic.

5.
Int J Nanomedicine ; 16: 3861-3874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113103

RESUMO

INTRODUCTION: Sponge-Coscinoderma sp. (Family: Spongiidae) is a coastal sponge that possesses a broad variety of natural-products. However, the exact chemical constituents and cytotoxic activity of the extract are still undefinable. METHODOLOGY: In the present study, the metabolomic profiling of Coscinoderma sp. dereplicated 20 compounds, utilizing liquid chromatography coupled with high-resolution mass spectrometry (LC-HRESIMS). Coscinoderma-derived crude extract, before and after encapsulation within nanosized liposomes, was in vitro screened against hepatic, breast, and colorectal carcinoma human cell lines (HepG2, MCF-7, and Caco-2, respectively). RESULTS: The identified metabolites were fit to diverse chemical classes, covering diterpenes, an indole alkaloid, sesterterpenoid, sterol, and methylherbipoline salt. Comprehensive in silico experiments predicted several compounds in the sponge-derived extract (eg, compounds 1-15) to have an anticancer potential via targeting multiple targets. The crude extract showed moderate antiproliferative activities towards studied cell lines with IC50 values range from 10.7 to 12.4 µg/mL. The formulated extract-containing liposomes (size 141±12.3nm, PDI 0.222, zeta potential 20.8 ± 2.3), significantly enhanced the in vitro anticancer activity of the entrapped extract (IC50 values ranged from 1.7 to 4.1 µg/mL). DISCUSSION: Encapsulation of both the hydrophilic and the lipophilic components of the extract within the lipid-based nanovesicles enhanced the cellular uptake and accessibility of the entrapped cargo. This study introduces liposomal nano-vesicles as a promising approach to improve the therapeutic potential of sponge-derived extracts.


Assuntos
Antineoplásicos/farmacologia , Misturas Complexas/farmacologia , Simulação por Computador , Lipossomos/administração & dosagem , Metaboloma , Neoplasias/tratamento farmacológico , Poríferos/química , Animais , Antineoplásicos/química , Apoptose , Humanos , Lipossomos/química , Neoplasias/metabolismo , Neoplasias/patologia , Células Tumorais Cultivadas
6.
Molecules ; 26(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809026

RESUMO

Chemical investigation of the methanolic extract of the Red Sea cucumber Holothuria spinifera led to the isolation of a new cerebroside, holospiniferoside (1), together with thymidine (2), methyl-α-d-glucopyranoside (3), a new triacylglycerol (4), and cholesterol (5). Their chemical structures were established by NMR and mass spectrometric analysis, including gas chromatography-mass spectrometry (GC-MS) and high-resolution mass spectrometry (HRMS). All the isolated compounds are reported in this species for the first time. Moreover, compound 1 exhibited promising in vitro antiproliferative effect on the human breast cancer cell line (MCF-7) with IC50 of 20.6 µM compared to the IC50 of 15.3 µM for the drug cisplatin. To predict the possible mechanism underlying the cytotoxicity of compound 1, a docking study was performed to elucidate its binding interactions with the active site of the protein Mdm2-p53. Compound 1 displayed an apoptotic activity via strong interaction with the active site of the target protein. This study highlights the importance of marine natural products in the design of new anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Cerebrosídeos/farmacologia , Holothuria/química , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Cerebrosídeos/química , Cerebrosídeos/isolamento & purificação , Simulação por Computador , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Técnicas In Vitro , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/química , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/química
7.
Antibiotics (Basel) ; 10(4)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920213

RESUMO

LC-MS-assisted metabolomic profiling of the Red Sea-derived brown algae Sargassum cinereum "Sargassaceae" dereplicated eleven compounds 1-11. Further phytochemical investigation afforded two new aryl cresol 12-13, along with eight known compounds 14-21. Both new metabolites, along with 19, showed moderate in vitro antiproliferative activity against HepG2, MCF-7, and Caco-2. Pharmacophore-based virtual screening suggested both 5-LOX and 15-LOX as the most probable target linked to their observed antiproliferative activity. The in vitro enzyme assays revealed 12 and 13 were able to inhibit 5-LOX more preferentially than 15-LOX, while 19 showed a convergent inhibitory activity toward both enzymes. Further in-depth in silico investigation revealed the molecular interactions inside both enzymes' active sites and explained the varying inhibitory activity for 12 and 13 toward 5-LOX and 15-LOX.

8.
Antioxidants (Basel) ; 10(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922167

RESUMO

Gastric ulceration is among the most serious humanpublic health problems. Olea europea L. cv. Arbequina is one of the numerous olive varieties which have scarcely been studied. The reported antioxidant and anti-inflammatory potential of the olive plant make it a potential prophylactic natural product against gastric ulcers. Consequently, the main goal of this study is to investigate the gastroprotective effect of Olea europea L. cv. Arbequina leaf extract. LC-HRMS-based metabolic profiling of the alcoholic extract of Olea europea L. cv. Arbequina led to the dereplication of 18 putative compounds (1-18). In vivo indomethacin-induced gastric ulcer in a rat model was established and the Olea europea extract was tested at a dose of 300 mg kg-1 compared to cimetidine (100 mg kg-1). The assessment of gastric mucosal lesions and histopathology of gastric tissue was done. It has been proved that Olea europea significantly decreased the ulcer index and protected the mucosa from lesions. The antioxidant potential of the extract was evaluated using three in vitro assays, H2O2 scavenging, xanthine oxidase inhibitory, and superoxide radical scavenging activities and showed promising activities. Moreover, an in silico based study was performed on the putatively dereplicated compounds, which highlighted that 3-hydroxy tyrosol (4) and oleacein (18) can target the 5-lipoxygenase enzyme (5-LOX) as a protective mechanism against the pathogenesis of ulceration. Upon experimental validation, both compounds 3-hydroxy tyrosol (HT) and oleacein (OC) (4 and 18, respectively) exhibited a significant in vitro 5-LOX inhibitory activity with IC50 values of 8.6 and 5.8 µg/mL, respectively. The present study suggested a possible implication of O. europea leaves as a potential candidate having gastroprotective, antioxidant, and 5-LOX inhibitory activity for the management of gastric ulcers.

9.
Plants (Basel) ; 10(1)2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33375282

RESUMO

The acute respiratory syndrome caused by the novel coronavirus (SARS-CoV-2) caused severe panic all over the world. The coronavirus (COVID-19) outbreak has already brought massive human suffering and major economic disruption and unfortunately, there is no specific treatment for COVID-19 so far. Herbal medicines and purified natural products can provide a rich resource for novel antiviral drugs. Therefore, in this review, we focused on the sterols and triterpenes as potential candidates derived from natural sources with well-reported in vitro efficacy against numerous types of viruses. Moreover, we compiled from these reviewed compounds a library of 162 sterols and triterpenes that was subjected to a computer-aided virtual screening against the active sites of the recently reported SARS-CoV-2 protein targets. Interestingly, the results suggested some compounds as potential drug candidates for the development of anti-SARS-CoV-2 therapeutics.

10.
Mar Drugs ; 18(8)2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752177

RESUMO

Bioactivity-guided fractionation of a methanolic extract of the Red Sea cucumber Holothuria spinifera and LC-HRESIMS-assisted dereplication resulted in the isolation of four compounds, three new cerebrosides, spiniferosides A (1), B (2), and C (3), and cholesterol sulfate (4). The chemical structures of the isolated compounds were established on the basis of their 1D NMR and HRMS spectral data. Metabolic profiling of the H. spinifera extract indicated the presence of diverse secondary metabolites, mostly hydroxy fatty acids, diterpenes, triterpenes, and cerebrosides. The isolated compounds were tested for their in vitro cytotoxicities against the breast adenocarcinoma MCF-7 cell line. Compounds 1, 2, 3, and 4 displayed promising cytotoxic activities against MCF-7 cells, with IC50 values of 13.83, 8.13, 8.27, and 35.56 µM, respectively, compared to that of the standard drug doxorubicin (IC50 8.64 µM). Additionally, docking studies were performed for compounds 1, 2, 3, and 4 to elucidate their binding interactions with the active site of the SET protein, an inhibitor of protein phosphatase 2A (PP2A), which could explain their cytotoxic activity. This study highlights the important role of these metabolites in the defense mechanism of the sea cucumber against fouling organisms and the potential uses of these active molecules in the design of new anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cerebrosídeos/farmacologia , Holothuria/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cerebrosídeos/química , Cerebrosídeos/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Feminino , Células HCT116 , Células HeLa , Células Hep G2 , Chaperonas de Histonas/metabolismo , Humanos , Concentração Inibidora 50 , Células MCF-7 , Masculino , Estrutura Molecular , Células PC-3 , Proteína Fosfatase 2/metabolismo , Metabolismo Secundário , Relação Estrutura-Atividade
11.
RSC Adv ; 10(53): 32148-32155, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-35518160

RESUMO

SARS-CoV-2 is a novel coronavirus that was first identified during the outbreak in Wuhan, China in 2019. It is an acute respiratory illness that can transfer among human beings. Natural products can provide a rich resource for novel antiviral drugs. They can interfere with viral proteins such as viral proteases, polymerases, and entry proteins. Several naturally occurring flavonoids were reported to have antiviral activity against different types of RNA and DNA viruses. A methanolic extract of Manilkara hexandra (Roxb.) Dubard leaves is rich in phenolic compounds, mainly flavonoids. Metabolic profiling of the secondary metabolites of Manilkara hexandra (Roxb.) Dubard leaves methanolic extract (MLME), and bark ethyl acetate (MBEE) extract using LC-HRESIMS resulted in the isolation of 18 compounds belonging to a variety of constituents, among which phenolic compounds, flavones, flavonol glycosides and triterpenes were predominant. Besides, four compounds (I-IV) were isolated and identified as myricetin I, myricitrin II, mearnsitrin III, and mearnsetin-3-O-ß-d-rutinoside IV (compound IV is isolated for the first time from genus Manilkara) and dereplicated in a metabolomic study as compounds 3, 5, 6, and 12, respectively. The molecular docking study showed that rutin, myricitrin, mearnsitrin, and quercetin 3-O-ß-d-glucoside have strong interaction with SARS-CoV-2 protease with high binding energy of -8.2072, -7.1973, -7.5855, and -7.6750, respectively. Interestingly, the results proved that rutin which is a citrus flavonoid glycoside exhibits the strongest inhibition effect to the SARS-CoV-2 protease enzyme. Consequently, it can contribute to developing an effective antiviral drug lead against the SARS-CoV-2 pandemic.

12.
PLoS One ; 14(11): e0223781, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31693694

RESUMO

The green synthesis of silver nanoparticles (SNPs) using plant extracts is an eco-friendly method. It is a single step and offers several advantages such as time reducing, cost-effective and environmental non-toxic. Silver nanoparticles are a type of Noble metal nanoparticles and it has tremendous applications in the field of diagnostics, therapeutics, antimicrobial activity, anticancer and neurodegenerative diseases. In the present work, the aqueous extracts of aerial parts of Lampranthus coccineus and Malephora lutea F. Aizoaceae were successfully used for the synthesis of silver nanoparticles. The formation of silver nanoparticles was early detected by a color change from pale yellow to reddish-brown color and was further confirmed by transmission electron microscope (TEM), UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), and energy-dispersive X-ray diffraction (EDX). The TEM analysis of showed spherical nanoparticles with a mean size between 12.86 nm and 28.19 nm and the UV- visible spectroscopy showed λmax of 417 nm, which confirms the presence of nanoparticles. The neuroprotective potential of SNPs was evaluated by assessing the antioxidant and cholinesterase inhibitory activity. Metabolomic profiling was performed on methanolic extracts of L. coccineus and M. lutea and resulted in the identification of 12 compounds, then docking was performed to investigate the possible interaction between the identified compounds and human acetylcholinesterase, butyrylcholinesterase, and glutathione transferase receptor, which are associated with the progress of Alzheimer's disease. Overall our SNPs highlighted its promising potential in terms of anticholinesterase and antioxidant activity as plant-based anti-Alzheimer drug and against oxidative stress.


Assuntos
Aizoaceae/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Nanopartículas Metálicas/uso terapêutico , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Química Verde , Humanos , Masculino , Metabolômica , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Simulação de Acoplamento Molecular , Tamanho da Partícula , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Prata/química , Prata/uso terapêutico
13.
Int J Nanomedicine ; 14: 6217-6229, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496682

RESUMO

BACKGROUND: Viral and microbial infections constitute one of the most important life-threatening problems. The emergence of new viral and bacterial infectious diseases increases the demand for new therapeutic drugs. PURPOSE: The objective of this study was to use the aqueous and hexane extracts of Lampranthus coccineus and Malephora lutea F. Aizoaceae for the synthesis of silver nanoparticles, and to investigate its possible antiviral activity. In addition to the investigation of the phytochemical composition of the crude methanolic extracts of the two plants through UPLC-MS metabolomic profiling, and it was followed by molecular docking in order to explore the chemical compounds that might contribute to the antiviral potential. METHODS: The formation of SNPs was further confirmed using a transmission electron microscope (TEM), UV-Visible spectroscopy and Fourier transform infrared spectroscopy. The antiviral activity of the synthesized nanoparticles was evaluated using MTT assay against HSV-1, HAV-10 virus and Coxsackie B4 virus. Metabolomics profiling was performed using UPLC-MS and molecular docking was performed via Autodock4 and visualization was done using the Discovery studio. RESULTS: The early signs of SNPs synthesis were detected by a color change from yellow to reddish brown color. The TEM analysis of SNPs showed spherical nanoparticles with mean size ranges between 10.12 nm to 27.89 nm, and 8.91 nm 14.48 nm for Lampranthus coccineus and Malephora lutea aqueous and hexane extracts respectively. The UV-Visible spectrophotometric analysis showed an absorption peak at λmax of 417 nm.The green synthesized SNPs of L. coccineus and M. lutea showed remarkable antiviral activity against HSV-1, HAV-10, and CoxB4 virus. Metabolomics profiling of the methanolic extract of L. coccineus and M. lutea resulted in identifying 12 compounds. The docking study predicted the patterns of interactions between the compounds of L. coccineus and M. lutea with herpes simplex thymidine kinase, hepatitis A 3c proteinase, and Coxsackievirus B4 3c protease, which was similar to those of the co-crystal inhibitors and this can provide a supposed explanation for the antiviral activity of the aqueous and nano extracts of L. coccineus and M. lutea. CONCLUSION: These results highlight that SNPs of L. coccineus and M. lutea could have antiviral activity against HSV-1, HAV-10, and CoxB4 virus.


Assuntos
Aizoaceae/química , Antivirais/farmacologia , Química Verde , Nanopartículas Metálicas/química , Prata/farmacologia , Animais , Antivirais/química , Morte Celular/efeitos dos fármacos , Chlorocebus aethiops , Ligantes , Metabolômica , Nanopartículas Metálicas/ultraestrutura , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Prata/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA