Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Neonatal Screen ; 9(4)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38132826

RESUMO

In the Norwegian newborn screening (NBS) program, genetic testing has been implemented as a second or third tier method for the majority of NBS disorders, significantly increasing positive predictive value (PPV). DNA is extracted from dried blood spot (DBS) filter cards. For monogenic disorders caused by variants in one single gene or a few genes only, Sanger sequencing has been shown to be the most time- and cost-efficient method to use. Here, we present the Sanger sequencing method, including primer sequences and the genetic test algorithms, currently used in the Norwegian newborn screening program.

2.
J Hepatol ; 79(4): 945-954, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37328071

RESUMO

BACKGROUND & AIMS: Lymphedema cholestasis syndrome 1 or Aagenaes syndrome is a condition characterized by neonatal cholestasis, lymphedema, and giant cell hepatitis. The genetic background of this autosomal recessive disease was unknown up to now. METHODS: A total of 26 patients with Aagenaes syndrome and 17 parents were investigated with whole-genome sequencing and/or Sanger sequencing. PCR and western blot analyses were used to assess levels of mRNA and protein, respectively. CRISPR/Cas9 was used to generate the variant in HEK293T cells. Light microscopy, transmission electron microscopy and immunohistochemistry for biliary transport proteins were performed in liver biopsies. RESULTS: One specific variant (c.-98G>T) in the 5'-untranslated region of Unc-45 myosin chaperone A (UNC45A) was identified in all tested patients with Aagenaes syndrome. Nineteen were homozygous for the c.-98G>T variant and seven were compound heterozygous for the variant in the 5'-untranslated region and an exonic loss-of-function variant in UNC45A. Patients with Aagenaes syndrome exhibited lower expression of UNC45A mRNA and protein than controls, and this was reproduced in a CRISPR/Cas9-created cell model. Liver biopsies from the neonatal period demonstrated cholestasis, paucity of bile ducts and pronounced formation of multinucleated giant cells. Immunohistochemistry revealed mislocalization of the hepatobiliary transport proteins BSEP (bile salt export pump) and MRP2 (multidrug resistance-associated protein 2). CONCLUSIONS: c.-98G>T in the 5'-untranslated region of UNC45A is the causative genetic variant in Aagenaes syndrome. IMPACT AND IMPLICATIONS: The genetic background of Aagenaes syndrome, a disease presenting with cholestasis and lymphedema in childhood, was unknown until now. A variant in the 5'-untranslated region of the Unc-45 myosin chaperone A (UNC45A) was identified in all tested patients with Aagenaes syndrome, providing evidence of the genetic background of the disease. Identification of the genetic background provides a tool for diagnosis of patients with Aagenaes syndrome before lymphedema is evident.


Assuntos
Colestase , Peptídeos e Proteínas de Sinalização Intracelular , Linfedema , Humanos , Recém-Nascido , Regiões 5' não Traduzidas/genética , Proteínas de Transporte/genética , Colestase/genética , Células HEK293 , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linfedema/diagnóstico , Linfedema/genética , Linfedema/metabolismo , Miosinas/genética , Miosinas/metabolismo
3.
Int J Neonatal Screen ; 6(3): 51, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33123633

RESUMO

In 2012, the Norwegian newborn screening program (NBS) was expanded (eNBS) from screening for two diseases to that for 23 diseases (20 inborn errors of metabolism, IEMs) and again in 2018, to include a total of 25 conditions (21 IEMs). Between 1 March 2012 and 29 February 2020, 461,369 newborns were screened for 20 IEMs in addition to phenylketonuria (PKU). Excluding PKU, there were 75 true-positive (TP) (1:6151) and 107 (1:4311) false-positive IEM cases. Twenty-one percent of the TP cases were symptomatic at the time of the NBS results, but in two-thirds, the screening result directed the exact diagnosis. Eighty-two percent of the TP cases had good health outcomes, evaluated in 2020. The yearly positive predictive value was increased from 26% to 54% by the use of the Region 4 Stork post-analytical interpretive tool (R4S)/Collaborative Laboratory Integrated Reports 2.0 (CLIR), second-tier biochemical testing and genetic confirmation using DNA extracted from the original dried blood spots. The incidence of IEMs increased by 46% after eNBS was introduced, predominantly due to the finding of attenuated phenotypes. The next step is defining which newborns would truly benefit from screening at the milder end of the disease spectrum. This will require coordinated international collaboration, including proper case definitions and outcome studies.

4.
Front Immunol ; 11: 1417, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754152

RESUMO

Severe combined immunodeficiency (SCID) and other T cell lymphopenias can be detected during newborn screening (NBS) by measuring T cell receptor excision circles (TRECs) in dried blood spot (DBS) DNA. Second tier next generation sequencing (NGS) with an amplicon based targeted gene panel using the same DBS DNA was introduced as part of our prospective pilot research project in 2015. With written parental consent, 21 000 newborns were TREC-tested in the pilot. Three newborns were identified with SCID, and disease-causing variants in IL2RG, RAG2, and RMRP were confirmed by NGS on the initial DBS DNA. The molecular findings directed follow-up and therapy: the IL2RG-SCID underwent early hematopoietic stem cell transplantation (HSCT) without any complications; the leaky RAG2-SCID received prophylactic antibiotics, antifungals, and immunoglobulin infusions, and underwent HSCT at 1 year of age. The child with RMRP-SCID had complete Hirschsprung disease and died at 1 month of age. Since January 2018, all newborns in Norway have been offered NBS for SCID using 1st tier TRECs and 2nd tier gene panel NGS on DBS DNA. During the first 20 months of nationwide SCID screening an additional 88 000 newborns were TREC tested, and four new SCID cases were identified. Disease-causing variants in DCLRE1C, JAK3, NBN, and IL2RG were molecularly confirmed on day 8, 15, 8 and 6, respectively after birth, using the initial NBS blood spot. Targeted gene panel NGS integrated into the NBS algorithm rapidly delineated the specific molecular diagnoses and provided information useful for management, targeted therapy and follow-up i.e., X rays and CT scans were avoided in the radiosensitive SCID. Second tier targeted NGS on the same DBS DNA as the TREC test provided instant confirmation or exclusion of SCID, and made it possible to use a less stringent TREC cut-off value. This allowed for the detection of leaky SCIDs, and simultaneously reduced the number of control samples, recalls and false positives. Mothers were instructed to stop breastfeeding until maternal cytomegalovirus (CMV) status was determined. Our limited data suggest that shorter time-interval from birth to intervention, may prevent breast milk transmitted CMV infection in classical SCID.


Assuntos
Biomarcadores/sangue , Teste em Amostras de Sangue Seco/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Triagem Neonatal/métodos , Imunodeficiência Combinada Severa/diagnóstico , Ácidos Nucleicos Livres/sangue , DNA Circular/sangue , Diagnóstico Precoce , Feminino , Humanos , Recém-Nascido , Masculino , Estudos Prospectivos
5.
Molecules ; 20(9): 15944-65, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26364627

RESUMO

The human 8-oxoguanine DNA glycosylase OGG1 is involved in base excision repair (BER), one of several DNA repair mechanisms that may counteract the effects of chemo- and radiation therapy for the treatment of cancer. We envisage that potent inhibitors of OGG1 may be found among the 9-alkyl-8-oxoguanines. Thus we explored synthetic routes to 8-oxoguanines and examined these as OGG1 inhibitors. The best reaction sequence started from 6-chloroguanine and involved N-9 alkylation, C-8 bromination, and finally simultaneous hydrolysis of both halides. Bromination before N-alkylation should only be considered when the N-substituent is not compatible with bromination conditions. The 8-oxoguanines were found to be weak inhibitors of OGG1. 6-Chloro-8-oxopurines, byproducts in the hydrolysis of 2,6-halopurines, turned out to be slightly better inhibitors than the corresponding 8-oxoguanines.


Assuntos
DNA Glicosilases/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Guanina/análogos & derivados , Alquilação , DNA Glicosilases/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Guanina/síntese química , Guanina/química , Guanina/farmacologia , Humanos , Especificidade por Substrato
6.
JIMD Rep ; 11: 79-85, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23580368

RESUMO

Combined methylmalonic aciduria and homocystinuria, cblC type (MMACHC), is the most common inborn error of cellular vitamin B12 metabolism and is caused by mutations in the MMACHC gene. This metabolic disease results in impaired intracellular synthesis of adenosylcobalamin and methylcobalamin, coenzymes for the methylmalonyl-CoA mutase and methionine synthase enzymes, respectively. The inability to produce normal levels of these two coenzymes leads to increased concentrations of methylmalonic acid and homocysteine in plasma and urine, together with normal or decreased concentration of methionine in plasma. Here, we report a novel homozygous deletion mutation (NM_015506.2:c.392_394del) resulting in an in-frame deletion of amino acid Gln131 and late-onset disease in a 23-year-old male. The patient presented with sensory and motoric disabilities, urine and fecal incontinence, and light cognitive impairment. There was an excessive urinary excretion of methylmalonic acid and greatly elevated plasma homocysteine. The clinical symptoms and the laboratory abnormalities responded partly to treatment with hydroxycobalamin, folinic acid, methionine, and betaine. Studies on patient fibroblasts together with spectroscopic activity assays on recombinant MMACHC protein reveal that Gln131 is crucial in order to maintain enzyme activity. Furthermore, structural analyses show that Gln131 is one of only two residues making hydrogen bonds to the tail of cobalamin. Circular dichroism spectroscopy indicates that the 3D structure of the deletion mutant is folded but perturbed compared to the wild-type protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...