Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 338: 111915, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944702

RESUMO

Plant filamentation temperature-sensitive H (FtsH) proteins are ATP-dependent zinc proteases that play an important role in regulating abiotic stress adaptions. Here we explore their potential role in abiotic stress tolerance in alfalfa, an important legume crop. Genomic analysis revealed seventeen MsFtsH genes in five clusters, which generally featured conserved domains and gene structures. Furthermore, the expression of MsFtsHs was found to be tightly associated with abiotic stresses, including osmotic, salt and oxidative stress. In addition, numerous stress responsive cis-elements, including those related to ABA, auxin, and salicylic acid, were identified in their promoter regions. Moreover, MsFtsH8 overexpression was shown to confer tolerance to salt and oxidative stress which was associated with reduced levels of reactive oxygen species, and enhanced expression and activity of antioxidant enzymes. Our results highlight MsFtsHs as key factors in abiotic stress tolerance, and show their potential usefulness for breeding alfalfa and other crops with improved yield and stress tolerance.


Assuntos
Medicago sativa , Peptídeo Hidrolases , Medicago sativa/metabolismo , Temperatura , Peptídeo Hidrolases/metabolismo , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Melhoramento Vegetal , Estresse Oxidativo , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Mol Biol Rep ; 50(12): 10097-10109, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37910387

RESUMO

BACKGROUND: Filamentation temperature-sensitive H (FtsH) is an AAA+ ATP-dependent protease that plays a vital role in plant environmental adaption and tolerance. However, little is known about the function of the FtsH gene family in the most important legume model plant, Medicago truncatula. METHODS AND RESULTS: To identify and investigate the potential stress adaptation roles of FtsH gene family in M. truncatula, we conducted a series of genome-wide characterization and expression analyses. Totally, twenty MtFtsH genes were identified, which were unevenly distributed across eight chromosomes and classified into six evolution groups based on their phylogenetic relationships, with each group containing similar structures and motifs. Furthermore, MtFtsH genes exhibited a high degree of collinearity and homology with leguminous plants such as alfalfa and soybean. Multiple cis-elements in the upstream region of MtFtsH genes were also identified that responded to light, abiotic stress, and phytohormones. Public RNA-seq data indicated that MtFtsH genes were induced under both salt and drought stresses, and our transcript expression analysis showed that MtFtsH genes of MtFtsH1, MtFtsH2, MtFtsH4, MtFtsH9, and MtFtsH10 were up-regulated after ABA, H2O2, PEG, and NaCl treatments. These results suggest that MtFtsH genes may play a critical role in drought and high salt stress responses and the adaption processes of plants. CONCLUSIONS: This study provides a systematic analysis of FtsH gene family in M. truncatula, serving as a valuable molecular theoretical basis for future functional investigations. Our findings also extend the pool of potential candidate genes for the genetic improvement of abiotic stress tolerance in legume crops.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Temperatura , Filogenia , Peróxido de Hidrogênio/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Front Plant Sci ; 13: 996672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325545

RESUMO

Biomass yield and Feed Quality are the most important traits in alfalfa (Medicago sativa L.), which directly affect its economic value. Drought stress is one of the main limiting factors affecting alfalfa production worldwide. However, the genetic and especially the molecular mechanisms for drought tolerance in alfalfa are poorly understood. In this study, linkage mapping was performed in an F1 population by combining 12 phenotypic data (biomass yield, plant height, and 10 Feed Quality-related traits). A total of 48 significant QTLs were identified on the high-density genetic linkage maps that were constructed in our previous study. Among them, nine main QTLs, which explained more than 10% phenotypic variance, were detected for biomass yield (one), plant height (one), CP (two), ASH (one), P (two), K(one), and Mg (one). A total of 31 candidate genes were identified in the nine main QTL intervals based on the RNA-seq analysis under the drought condition. Blast-P was further performed to screen candidate genes controlling drought tolerance, and 22 functional protein candidates were finally identified. The results of the present study will be useful for improving drought tolerance of alfalfa varieties by marker-assisted selection (MAS), and provide promising candidates for further gene cloning and mechanism study.

4.
Front Plant Sci ; 13: 1001206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36254261

RESUMO

Uridine diphosphate glycosyltransferases (UGTs) are enzymes that catalyze glycosylation modifications and play an essential role in regulating plant metabolism. Alfalfa (Medicago sativa L.) is the most important legume in the world due to its high yields and protein content; however, the UGT genes in alfalfa have not yet been studied. Identifying UGT genes with metabolic roles in alfalfa is essential for identifying and modifying genetic traits that are relevant to yield and quality. In this study, 90 of the 239 UGT genes identified from the alfalfa "Zhongmu No. 1" genome database were found to be related to secondary metabolism, and a series of gene family characterization analyses were conducted on each. The results demonstrated that all 90 UGT genes were unevenly distributed on eight chromosomes with few introns and that tandem duplications were the crucial driving force expanding the UGT family in alfalfa. Notably, the 90 UGT genes can be clustered into ten evolutionary groups which contain specific PSPG motifs, and genes in these ten groups have specific tissue expressions. This suggests that the UGT genes in each group could have similar glycosylation roles corresponding to analogous secondary metabolites in alfalfa. Additionally, multiple cis-acting elements found in MsUGT promoter regions, such as phytohormone and flavonoids, indicate that 90 UGT members could be induced by these features, which are also related to secondary metabolism. Therefore, our study identified 90 UGT members inten evolutionary groups that are likely related to glycosylation modifications with secondary metabolites in alfalfa. These findings help uncover pivotal regulatory mechanisms associated with secondary metabolism in plant yield and quality and contribute to genetic modification and breeding in alfalfa and other plant species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA