Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 9(22): e2201844, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35596610

RESUMO

Tandem structures with different subpixels are promising for perovskite-based multicolor electroluminescence (EL) devices in ultra-high-resolution full-color displays; however, realizing excellent luminance- and color-independent tunability considering the low brightness and stability of blue perovskite light-emitting diodes (PeLEDs) remains a challenge. Herein, a bright and stable blue gallium nitride (GaN) LED is utilized for vertical integration with a green MAPbBr3 PeLED, successfully achieving a Pe-GaN tandem LED with independently tunable luminance and color. The electronic and photonic co-excitation (EPCE) effect is found to suppress the radiative recombination and current injection of PeLEDs, leading to degraded luminance and current efficiency under direct current modulation. Accordingly, the pulse-width modulation is introduced to the tandem device with a negligible EPCE effect, and the average hybrid current efficiency is significantly improved by 139.5%, finally achieving a record tunable luminance (average tuning range of 16631 cd m-2 at an arbitrary color from blue to green) for perovskite-based multi-color LEDs. The reported excellent independent tunability can be the starting point for perovskite-based multicolor EL devices, enabling the combination with matured semiconductor technologies to facilitate their commercialization in advanced display applications with ultra-high resolution.

2.
ACS Nano ; 15(1): 550-562, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33356139

RESUMO

In this study, we analyze the influence of the pore structure of an SBA-15 particle on the light emission from its inner adsorbed quantum dots (QDs) and outer light-emitting diode (LED) chips. It is found that the particle features of a high refractive index, comparable feature size of pore structure, and lower amount of QD adsorption help with QD light extraction, demonstrating a mechanism to suppress QD light propagating through pores and thus reducing the reabsorption loss. We consequently developed highly efficient QD white LEDs with wet-mixing QD/SBA-15 nanocomposite particles (NPs) by further optimizing the packaging methods and the introduced NP mass ratio. The LEDs demonstrated a record luminous efficacy (the ratio of luminous flux to electrical power) of 206.8 (entrusted test efficiency of 205.8 lm W-1 certificated by China National Accreditation Service) and 137.6 lm W-1 at 20 mA for white LEDs integrating only green QDs and green-red QD color convertors, respectively, with improved operating stability. These results are comparable to conventional phosphor-based white LEDs, which can be a starting point for white LEDs only using QDs as convertors toward commercialization in the near future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA