Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38203739

RESUMO

Arthrinium phaeospermum is the major pathogen responsible for the significant stem disease "blight" in B. pervariabilis × D. grandis. The interacting proteins of the key pathogenic factor ApCtf1ß, BDUbc and BDSKL1, have previously been obtained by two-hybrid, BiFC, GST pull-down yeast assays. However, the functions of these interacting proteins remain unknown. This study successfully obtained transgenic plants overexpressing BDUbc, BDSKL1, and BDUbc + BDSKL1 via Agrobacterium-mediated gene overexpression. qRT-PCR analysis revealed significantly increased expression levels of BDUbc and BDSKL1 in the transgenic plants. After infection with the pathogenic spore suspension, the disease incidence and severity index significantly decreased across all three transgenic plants, accompanied by a marked increase in defense enzyme levels. Notably, the co-transformed plant, OE-BDUbc + BDSKL1, demonstrated the lowest disease incidence and severity index among the transgenic variants. These results not only indicate that BDUbc and BDSKL1 are disease-resistant genes, but also that these two genes may exhibit a synergistic enhancement effect, which further improves the resistance to blight in Bambusa pervariabilis × Dendrocalamopsis grandis.


Assuntos
Bambusa , Ceratoconjuntivite , Agrobacterium , Bioensaio , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae
2.
Front Plant Sci ; 14: 1185449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37538062

RESUMO

Plant root pathogens invade the soil around plant roots, disturbing the systemic balance, reducing plant defenses, and causing severe disease. At present, there are few studies on the severity of plant diseases caused by pathogen invasion in different seasons and how pathogens affect root microecology. In this study, we compared the levels of nutrients in the root tissues of the two groups of plants. We used 16S and ITS amplicon sequencing with Illumina NovaSeq 6000 to compare seasonal changes in the composition and structure of microbial communities from healthy roots of bamboo Bambusa pervariabilis × Dendrocalamopsis grandis and roots infected by the soilborne pathogen Fusarium proliferatum. We have found that the invasion of the pathogen led to a substantial decrease in nutrient elements in bamboo roots, except for nitrogen. The pathogen presence correlated with seasonal changes in the bamboo root microbiome and decreased bacterial richness in diseased plants. The root microbial community structure of healthy plants was more stable than that of their diseased counterparts. Furthermore, we identified the lesion area and relative abundance of F. proliferatum were significant predictors of disease progression. The potassium tissue content and the disease lesion area were identified as factors linked with the observed changes in the bamboo root microbiome. This study provides a theoretical foundation for understanding the seasonal dynamics F. proliferatum, an economically important soilborne pathogen of hybrid bamboo grown in Sichuan Province, China.

3.
J Diabetes Res ; 2016: 9083103, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069933

RESUMO

Type 1 diabetes is an autoimmune disease in which insulin-producing pancreatic islet ß cells are the target of self-reactive B and T cells. T cells reactive with epitopes derived from insulin and/or IGRP are critical for the initiation and maintenance of disease, but T cells reactive with other islet antigens likely have an essential role in disease progression. We sought to identify candidate CD8(+) T cell epitopes that are pathogenic in type 1 diabetes. Proteins that elicit autoantibodies in human type 1 diabetes were analyzed by predictive algorithms for candidate epitopes. Using several different tolerizing regimes using synthetic peptides, two new predicted tolerogenic CD8(+) T cell epitopes were identified in the murine homolog of the major human islet autoantigen zinc transporter ZnT8 (aa 158-166 and 282-290) and one in a non-ß cell protein, dopamine ß-hydroxylase (aa 233-241). Tolerizing vaccination of NOD mice with a cDNA plasmid expressing full-length proinsulin prevented diabetes, whereas plasmids encoding ZnT8 and DßH did not. However, tolerizing vaccination of NOD mice with the proinsulin plasmid in combination with plasmids expressing ZnT8 and DßH decreased insulitis and enhanced prevention of disease compared to vaccination with the plasmid encoding proinsulin alone.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteínas de Transporte de Cátions/imunologia , Diabetes Mellitus Tipo 1/terapia , Dopamina beta-Hidroxilase/imunologia , Epitopos de Linfócito T , Terapia Genética/métodos , Tolerância Imunológica , Células Secretoras de Insulina/imunologia , Proinsulina/imunologia , Vacinação , Animais , Autoanticorpos/imunologia , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Dopamina beta-Hidroxilase/genética , Feminino , Humanos , Células Secretoras de Insulina/patologia , Ativação Linfocitária , Camundongos Endogâmicos NOD , Proinsulina/genética , Fatores de Tempo , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Transportador 8 de Zinco
4.
Eukaryot Cell ; 7(10): 1649-60, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18658255

RESUMO

The histone H3 amino terminus, but not that of H4, is required to prevent the constitutively bound activator Cha4 from remodeling chromatin and activating transcription at the CHA1 gene in Saccharomyces cerevisiae. Here we show that neither the modifiable lysine residues nor any specific region of the H3 tail is required for repression of CHA1. We then screened for histone H3 mutations that cause derepression of the uninduced CHA1 promoter and identified six mutants, three of which are also temperature-sensitive mutants and four of which exhibit a sin(-) phenotype. Histone mutant levels were similar to that of wild-type H3, and the mutations did not cause gross alterations in nucleosome structure. One specific and strongly derepressing mutation, H3 A111G, was examined in depth and found to cause a constitutively active chromatin configuration at the uninduced CHA1 promoter as well as at the ADH2 promoter. Transcriptional derepression and altered chromatin structure of the CHA1 promoter depend on the activator Cha4. These results indicate that modest perturbations in distinct regions of the nucleosome can substantially affect the repressive function of chromatin, allowing activation in the absence of a normal inducing signal (at CHA1) or of Swi/Snf (resulting in a sin(-) phenotype).


Assuntos
Cromatina/genética , Regulação para Baixo , Histonas/genética , L-Serina Desidratase/genética , Mutação , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Treonina Desidratase/genética , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , L-Serina Desidratase/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Treonina Desidratase/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica
5.
J Biol Chem ; 281(14): 9755-64, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16461773

RESUMO

Histone amino termini are post-translationally modified by both transcriptional coactivators and corepressors, but the extent to which the relevant histone modifications contribute to gene expression, and the mechanisms by which they do so, are incompletely understood. To address this issue, we have examined the contributions of the histone H3 and H4 amino termini, and of the coactivator and histone acetyltransferase Gcn5p, to activation of a small group of Gcn4p-activated genes. The histone H3 tail exerts a modest (about 2-fold) but significant effect on activation that correlates with a requirement for Gcn5p and is distributed over multiple lysine residues. The H4 tail also plays a positive role in activation of some of those genes tested, but this does not correlate as closely with Gcn5p coactivation. Microarray experiments did not reveal a close correspondence between those genes activated by Gcn4p and genes requiring the H3 or H4 tail, and analysis of published microarray data indicates that Gcn4p-regulated genes are not in general strongly dependent on Gcn5p. However, a large fraction of genes activated by Gcn4p were found to be repressed by the H3 and H4 amino termini under non-inducing conditions, indicating that one role for Gcn4p is to overcome repression mediated by the histone tails.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Histona Acetiltransferases/fisiologia , Histonas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/fisiologia , Ativação Transcricional , Fatores de Transcrição de Zíper de Leucina Básica , Proteínas de Ligação a DNA/genética , Histona Acetiltransferases/genética , Análise de Sequência com Séries de Oligonucleotídeos , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
6.
Mol Cell Biol ; 24(20): 8823-33, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15456858

RESUMO

The histone amino termini have emerged as key targets for a variety of modifying enzymes that function as transcriptional coactivators and corepressors. However, an important question that has remained largely unexplored is the extent to which specific histone amino termini are required for the activating and repressive functions of these enzymes, Here we address this issue by focusing on the prototypical histone deacetylase, Rpd3p, in the budding yeast Saccharomyces cerevisiae. We show that targeting Rpd3p to a reporter gene in this yeast can partially repress transcription when either the histone H3 or the histone H4 amino terminus is deleted, indicating that the "tails" are individually dispensable for repression by Rpd3p. In contrast, we find that the effect of rpd3 gene disruption on global gene expression is considerably reduced in either a histone H3Delta1-28 (H3 lacking the amino-terminal 28 amino acids) or a histone H4(K5,8,12,16Q) (H4 with lysine residues 5, 8, 12, and 16 changed to glutamine residues) background compared to the wild-type background, indicating a requirement for one or both of these histone tails in Rpd3p-mediated regulation for many genes. These results suggest that acetylation of either the H3 or the H4 amino terminus could suffice to allow the activation of such genes. We also examine the relationship between H3 tails and H4 tails in global gene expression and find substantial overlap among the gene sets regulated by these histone tails. We also show that the effects on genome-wide expression of deleting the H3 or H4 amino terminus are similar but not identical to the effects of mutating the lysine residues in these same regions. These results indicate that the gene regulatory potential of the H3 and H4 amino termini is substantially but not entirely contained in these modifiable lysine residues.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genoma Fúngico , Histona Desacetilases/metabolismo , Histonas/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Análise por Conglomerados , Ativação Enzimática , Genes Reporter , Histona Desacetilases/genética , Histonas/genética , Lisina/metabolismo , Análise Serial de Proteínas , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...