Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1071162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334383

RESUMO

Introduction: IL-27 is a heterodimeric cytokine composed of Ebi3 and IL-27p28 and can exert proinflammatory or immune suppressive effects depending on the physiological context. Ebi3 does not contain membrane-anchoring motifs, suggesting that it is a secreted protein while IL-27p28 is poorly secreted. How IL-27p28 and Ebi3 dimerize in-vivo to form biologically active IL-27 is unknown. Major impediment to clinical use of IL-27 derives from difficulty of determining exact amount of bioavailable heterodimeric IL-27 needed for therapy. Methods: To understand how IL-27 mediates immune suppression, we characterized an innate IL-27-producing B-1a regulatory B cell population (i27-Breg) and mechanisms i27-Bregs utilize to suppress neuroinflammation in mouse model of uveitis. We also investigated biosynthesis of IL-27 and i27-Breg immunobiology by FACS, immunohistochemical and confocal microscopy. Results: Contrary to prevailing view that IL-27 is a soluble cytokine, we show that i27-Bregs express membrane-bound IL-27. Immunohistochemical and confocal analyses co-localized expression of IL-27p28 at the plasma membrane in association with CD81 tetraspanin, a BCR-coreceptor protein and revealed that IL-27p28 is a transmembrane protein in B cells. Most surprising, we found that i27-Bregs secrete IL-27-containing exosomes (i27-exosomes) and adoptive transfer of i27-exosomes suppressed uveitis by antagonizing Th1/Th17 cells, up-regulating inhibitory-receptors associated with T-cell exhaustion while inducing Treg expansion. Discussion: Use of i27-exosomes thus obviates the IL-27 dosing problem, making it possible to determine bioavailable heterodimeric IL-27 needed for therapy. Moreover, as exosomes readily cross the blood-retina-barrier and no adverse effects were observed in mice treated with i27-exosome, results of this study suggest that i27-exosomes might be a promising therapeutic approach for CNS autoimmune diseases.


Assuntos
Doenças Autoimunes , Exossomos , Interleucina-27 , Uveíte , Camundongos , Animais , Exossomos/metabolismo , Células Th1
2.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35897732

RESUMO

Interleukin-27 is constitutively secreted by microglia in the retina or brain, and upregulation of IL-27 during neuroinflammation suppresses encephalomyelitis and autoimmune uveitis. However, while IL-35 is structurally and functionally similar to IL-27, the intrinsic roles of IL-35 in CNS tissues are unknown. Thus, we generated IL-35/YFP-knock-in reporter mice (p35-KI) and demonstrated that photoreceptor neurons constitutively secrete IL-35, which might protect the retina from persistent low-grade inflammation that can impair photoreceptor functions. Furthermore, the p35-KI mouse, which is hemizygous at the il12a locus, develops more severe uveitis because of reduced IL-35 expression. Interestingly, onset and exacerbation of uveitis in p35-KI mice caused by extravasation of proinflammatory Th1/Th17 lymphocytes into the retina were preceded by a dramatic decrease of IL-35, attributable to massive death of photoreceptor cells. Thus, while inflammation-induced death of photoreceptors and loss of protective effects of IL-35 exacerbated uveitis, our data also suggest that constitutive production of IL-35 in the retina might have housekeeping functions that promote sterilization immunity in the neuroretina and maintain ocular immune privilege.


Assuntos
Doenças Autoimunes , Interleucinas , Uveíte , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Privilégio Imunológico , Inflamação/metabolismo , Interleucina-27/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Células Th17 , Uveíte/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782464

RESUMO

Regulatory B cells (Breg cells) that secrete IL-10 or IL-35 (i35-Breg) play key roles in regulating immunity in tumor microenvironment or during autoimmune and infectious diseases. Thus, loss of Breg function is implicated in development of autoimmune diseases while aberrant elevation of Breg prevents sterilizing immunity, exacerbates infectious diseases, and promotes cancer metastasis. Breg cells identified thus far are largely antigen-specific and derive mainly from B2-lymphocyte lineage. Here, we describe an innate-like IL-27-producing natural regulatory B-1a cell (i27-Breg) in peritoneal cavity and human umbilical cord blood. i27-Bregs accumulate in CNS and lymphoid tissues during neuroinflammation and confers protection against CNS autoimmune disease. i27-Breg immunotherapy ameliorated encephalomyelitis and uveitis through up-regulation of inhibitory receptors (Lag3, PD-1), suppression of Th17/Th1 responses, and propagating inhibitory signals that convert conventional B cells to regulatory lymphocytes that secrete IL-10 and/or IL-35 in eye, brain, or spinal cord. Furthermore, i27-Breg proliferates in vivo and sustains IL-27 secretion in CNS and lymphoid tissues, a therapeutic advantage over administering biologics (IL-10, IL-35) that are rapidly cleared in vivo. Mutant mice lacking irf4 in B cells exhibit exaggerated increase of i27-Bregs with few i35-Bregs, while mice with loss of irf8 in B cells have abundance of i35-Bregs but defective in generating i27-Bregs, identifying IRF8/BATF and IRF4/BATF axis in skewing B cell differentiation toward i27-Breg and i35-Breg developmental programs, respectively. Consistent with its developmental origin, disease suppression by innate i27-Bregs is neither antigen-specific nor disease-specific, suggesting that i27-Breg would be effective immunotherapy for a wide spectrum of autoimmune diseases.


Assuntos
Doenças Autoimunes/imunologia , Doenças do Sistema Nervoso Central/imunologia , Interleucina-27/metabolismo , Doenças Neuroinflamatórias/imunologia , Animais , Linfócitos B Reguladores/imunologia , Diferenciação Celular , Encefalite , Fatores Reguladores de Interferon , Interleucina-10 , Camundongos , Uveíte/imunologia
4.
Front Immunol ; 12: 724609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603297

RESUMO

STAT3 activates transcription of genes that regulate cell growth, differentiation, and survival of mammalian cells. Genetic deletion of Stat3 in T cells has been shown to abrogate Th17 differentiation, suggesting that STAT3 is a potential therapeutic target for Th17-mediated diseases. However, a major impediment to therapeutic targeting of intracellular proteins such as STAT3 is the lack of efficient methods for delivering STAT3 inhibitors into cells. In this study, we developed a novel antibody (SBT-100) comprised of the variable (V) region of a STAT3-specific heavy chain molecule and demonstrate that this 15 kDa STAT3-specific nanobody enters human and mouse cells, and induced suppression of STAT3 activation and lymphocyte proliferation in a concentration-dependent manner. To investigate whether SBT-100 would be effective in suppressing inflammation in vivo, we induced experimental autoimmune uveitis (EAU) in C57BL/6J mice by active immunization with peptide from the ocular autoantigen, interphotoreceptor retinoid binding protein (IRBP651-670). Analysis of the retina by fundoscopy, histological examination, or optical coherence tomography showed that treatment of the mice with SBT-100 suppressed uveitis by inhibiting expansion of pathogenic Th17 cells that mediate EAU. Electroretinographic (ERG) recordings of dark and light adapted a- and b-waves showed that SBT-100 treatment rescued mice from developing significant visual impairment observed in untreated EAU mice. Adoptive transfer of activated IRBP-specific T cells from untreated EAU mice induced EAU, while EAU was significantly attenuated in mice that received IRBP-specific T cells from SBT-100 treated mice. Taken together, these results demonstrate efficacy of SBT-100 in mice and suggests its therapeutic potential for human autoimmune diseases.


Assuntos
Doenças Autoimunes/prevenção & controle , Fator de Transcrição STAT3/imunologia , Células Th17/imunologia , Uveíte/prevenção & controle , Transferência Adotiva , Animais , Autoantígenos/imunologia , Autoantígenos/metabolismo , Doenças Autoimunes/imunologia , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Proteínas do Olho/imunologia , Proteínas do Olho/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação ao Retinol/imunologia , Proteínas de Ligação ao Retinol/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Th17/patologia , Uveíte/imunologia
5.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803441

RESUMO

Interferon regulatory factor-4 (IRF4) and IRF8 regulate differentiation, growth and functions of lymphoid and myeloid cells. Targeted deletion of irf8 in T cells (CD4-IRF8KO) has been shown to exacerbate colitis and experimental autoimmune uveitis (EAU), a mouse model of human uveitis. We therefore generated mice lacking irf4 in T cells (CD4-IRF4KO) and investigated whether expression of IRF4 by T cells is also required for regulating T cells that suppress autoimmune diseases. Surprisingly, we found that CD4-IRF4KO mice are resistant to EAU. Suppression of EAU derived in part from inhibiting pathogenic responses of Th17 cells while inducing expansion of regulatory lymphocytes that secrete IL-10 and/or IL-35 in the eye and peripheral lymphoid tissues. Furthermore, CD4-IRF4KO T cells exhibit alterations in cell metabolism and are defective in the expression of two Ikaros zinc-finger (IKZF) transcription factors (Ikaros, Aiolos) that are required for lymphocyte differentiation, metabolism and cell-fate decisions. Thus, synergistic effects of IRF4 and IkZFs might induce metabolic reprogramming of differentiating lymphocytes and thereby dynamically regulate relative abundance of T and B lymphocyte subsets that mediate immunopathogenic mechanisms during uveitis. Moreover, the diametrically opposite effects of IRF4 and IRF8 during EAU suggests that intrinsic function of IRF4 in T cells might be activating proinflammatory responses while IRF8 promotes expansion of immune-suppressive mechanisms.


Assuntos
Doenças Autoimunes , Linfócitos T CD4-Positivos , Diferenciação Celular , Deleção de Genes , Fatores Reguladores de Interferon/deficiência , Transcrição Gênica/imunologia , Uveíte , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Camundongos , Camundongos Knockout , Uveíte/genética , Uveíte/imunologia , Uveíte/metabolismo , Uveíte/patologia
6.
Sci Rep ; 10(1): 16188, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004854

RESUMO

STAT3 transcription factor induces differentiation of naïve T cells into Th17 cells and loss of STAT3 in T cell prevents development of CNS autoimmune diseases. However, function of STAT3 in the B lymphocyte subset is not well understood. In this study, we have generated mice lacking STAT3 in CD19+ B cells (CD19-STAT3KO) and investigated intrinsic and extrinsic functions of STAT3 in B cells and its potential role in resistance or pathogenesis of organ-specific autoimmune diseases. We show that STAT3 regulates metabolic mechanisms in B cells with implications for bioenergetic and metabolic pathways that control cellular homeostasis in B cells. Thus, loss of STAT3 in CD19-STAT3KO cells perturbed growth and apoptosis by inducing rapid entry of B cells into the S-phase of the cell cycle, decreasing expression of cyclin-dependent kinase inhibitors and upregulating pro-apoptotic proteins. We further show that the CD19-STAT3KO mice develop severe experimental autoimmune uveitis (EAU), an animal model of human uveitis. Exacerbated uveitis in CD19-STAT3KO mice derived in part from enhanced expression of costimulatory molecules on B cells, marked increase of Th17 responses and increased recruitment of granulocytes into the neuroretina. The enhanced autoimmunity upon deletion of STAT3 in B cells is also recapitulated in experimental autoimmune encephalitis, a mouse model of multiple sclerosis and thus support our conclusion that STAT3 deletion in B cells enhanced inflammation and the effects observed are not model specific. Our data further indicate that STAT3 pathway modulates interactions between B and T cells during EAU resulting in alteration of lymphocyte repertoire by increasing levels of autoreactive pathogenic T cells while suppressing development and/or expansion of immune-suppressive lymphocytes (Bregs and Tregs). Taken together, STAT3 exerts diametrically opposite effects in lymphocytes, with loss of STAT3 in B cells exacerbating uveitis whereas Stat3 deletion in T cells confers protection.


Assuntos
Doenças Autoimunes/patologia , Linfócitos B Reguladores/imunologia , Fator de Transcrição STAT3/fisiologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia , Uveíte/patologia , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Diferenciação Celular , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retina/imunologia , Retina/patologia , Uveíte/etiologia , Uveíte/metabolismo
7.
Adv Exp Med Biol ; 1185: 353-358, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31884637

RESUMO

Neurotrophic factors can promote the survival of degenerating retinal cells through the activation of STAT3 pathway. Thus, augmenting STAT3 activation in the retina has been proposed as potential therapy for retinal dystrophies. On the other hand, aberrant activation of STAT3 pathway is oncogenic and implicated in diverse human diseases. Furthermore, the STAT3/SOCS3 axis has been shown to induce the degradation of rhodopsin during retinal inflammation. In this study, we generated and used mice with constitutive activation of STAT3 pathway in the retina to evaluate the safety and consequences of enhancing STAT3 activities in the retina as a potential treatment for retinal degenerative diseases. We show that long-term activation of the STAT3 pathway can induce retinal degenerative changes and also exacerbate uveitis and other intraocular inflammatory diseases. Mechanisms underlying the development of vision impairment in the STAT3c-Tg mice derived in part from STAT3-mediated inhibition of rhodopsin and overexpression of SOCS3 in the retina. These results suggest that much caution should be exercised in the use of STAT3 augmentation therapy for retinal dystrophies.


Assuntos
Envelhecimento , Retina/patologia , Degeneração Retiniana/patologia , Fator de Transcrição STAT3/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteínas Supressoras da Sinalização de Citocina , Uveíte/patologia
8.
J Leukoc Biol ; 104(6): 1147-1157, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30117603

RESUMO

IL-10 and IL-35 suppress excessive immune responses and therapeutic strategies are being developed to increase their levels in autoimmune diseases. In this study, we sought to identify major cell types that produce both cytokines in-vivo and to characterize mechanisms that regulate their production. Experimental autoimmune uveitis (EAU) is a CNS autoimmune disease that serves as model of human uveitis. We induced EAU in C57BL/6J mice and investigated whether T cells, B lymphocytes, or myeloid cells are the major producers of IL-10 or IL-35 in blood, lymph nodes (LNs), spleen, and at the site of ocular inflammation, the neuroretina. Analysis of these tissues identified B cells as the major producers of IL-10 and IL-35 in-vivo. Compared to regulatory T cells (Tregs), IL-10- or IL-35-producing regulatory B cells (Bregs) are substantially expanded in blood, LNs, spleen, and retina of mice with EAU. We performed EMSA and chromatin immunoprecipitation (ChIP) assays on activated B cells stimulated with IL-35 or TLR agonists. We found that BATF, IFN regulatory factor (IRF)-4, and IRF-8 transcription factors were recruited and bound to AP1-IRF-composite elements (AICEs) of il12a, ebi3, and/or il10 loci, suggesting their involvement in regulating IL-10 and IL-35 transcriptional programs of B cells. Showing that B cells are major source of IL-10 and IL-35 in-vivo and identifying transcription factors that contribute to IL-10 and IL-35 expression in the activated B-cell, suggest that the BATF/IRF-4/IRF-8 axis can be exploited therapeutically to regulate physiological levels of IL-10/IL-35-Bregs and that adoptive transfer of autologous Bregs might be an effective therapy for autoimmune and neurodegenerative diseases.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos B Reguladores/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Fatores Reguladores de Interferon/fisiologia , Interleucina-10/genética , Subunidade p35 da Interleucina-12/genética , Interleucinas/biossíntese , Antígenos de Histocompatibilidade Menor/genética , Receptores de Citocinas/genética , Uveíte/imunologia , Animais , Doenças Autoimunes/metabolismo , Feminino , Interleucina-10/biossíntese , Subunidade p35 da Interleucina-12/biossíntese , Interleucinas/agonistas , Interleucinas/genética , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Retina/imunologia , Retina/metabolismo , Retina/patologia , Linfócitos T Reguladores/imunologia , Transcrição Gênica , Uveíte/metabolismo
9.
J Exp Med ; 215(4): 1079-1090, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29490936

RESUMO

Appropriate regulation of IL-17 production in the host can mean the difference between effective control of pathogens and uncontrolled inflammation that causes tissue damage. Investigation of conventional CD4+ T cells (Th17 cells) has yielded invaluable insights into IL-17 function and its regulation. More recently, we and others reported production of IL-17 from innate αß+ T cell populations, which was shown to occur primarily via IL-23R signaling through the transcription factor STAT-3. In our current study, we identify promyelocytic leukemia zinc finger (PLZF)-expressing iNKT, CD4-/CD8+, and CD4-/CD8- (DN) αß+T cells, which produce IL-17 in response to TCR and IL-1 receptor ligation independently of STAT-3 signaling. Notably, this noncanonical pathway of IL-17 production may be important in mucosal defense and is by itself sufficient to control pathogenic Staphylococcus aureus infection at the ocular surface.


Assuntos
Infecções Oculares/imunologia , Infecções Oculares/patologia , Imunidade Inata , Interleucina-17/biossíntese , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Memória Imunológica , Interleucinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa/imunologia , Mucosa/microbiologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fosforilação , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Transdução de Sinais , Staphylococcus aureus/fisiologia , Linfócitos T/metabolismo , Células Th17/metabolismo , Timo/metabolismo
10.
Front Immunol ; 8: 1258, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29051763

RESUMO

Multiple sclerosis (MS) is an inflammatory demyelinating disease in which cytokines produced by immune cells that infiltrate the brain and spinal cord play a central role. We show here that the IL-12p35, the alpha subunit of IL-12 or IL-35 cytokine, might be an effective biologic for suppressing neuroinflammatory responses and ameliorating the pathology of experimental autoimmune encephalomyelitis (EAE), the mouse model of human MS. We further show that IL-12p35 conferred protection from neuropathy by inhibiting the expansion of pathogenic Th17 and Th1 cells and inhibiting trafficking of inflammatory cells into the brain and spinal cord. In addition, in vitro exposure of encephalitogenic cells to IL-12p35 suppressed their capacity to induce EAE by adoptive transfer. Importantly, the IL-12p35-mediated expansion of Treg and Breg cells and its amelioration of EAE correlated with inhibition of cytokine-induced activation of STAT1/STAT3 pathways. Moreover, IL-12p35 inhibited lymphocyte proliferation by suppressing the expressions of cell-cycle regulatory proteins. Taken together, these results suggest that IL-12p35 can be exploited as a novel biologic for treating central nervous system autoimmune diseases and offers the promise of ex vivo production of large amounts of Tregs and Bregs for immunotherapy.

11.
Nat Commun ; 8(1): 719, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28959012

RESUMO

Interleukin 35 (IL-35) is a heterodimeric cytokine composed of IL-12p35 and Ebi3 subunits. IL-35 suppresses autoimmune diseases while preventing host defense to infection and promoting tumor growth and metastasis by converting resting B and T cells into IL-10-producing and IL-35-producing regulatory B (Breg) and T (Treg) cells. Despite sharing the IL-12p35 subunit, IL-12 (IL-12p35/IL-12p40) promotes inflammatory responses whereas IL-35 (IL-12p35/Ebi3) induces regulatory responses, suggesting that IL-12p35 may have unknown intrinsic immune-regulatory functions regulated by its heterodimeric partner. Here we show that the IL-12p35 subunit has immunoregulatory functions hitherto attributed to IL-35. IL-12p35 suppresses lymphocyte proliferation, induces expansion of IL-10-expressing and IL-35-expressing B cells and ameliorates autoimmune uveitis in mice by antagonizing pathogenic Th17 responses. Recapitulation of essential immunosuppressive activities of IL-35 indicates that IL-12p35 may be utilized for in vivo expansion of Breg cells and autologous Breg cell immunotherapy. Furthermore, our uveitis data suggest that intrinsic immunoregulatory activities of other single chain IL-12 subunits might be exploited to treat other autoimmune diseases.IL-12p35 is common to IL-35 and IL-12, which have opposing effects on inflammation. Here the authors show that the IL-12p35 subunit induces regulatory B cells and can be used therapeutically to limit autoimmune uveitis in mice.


Assuntos
Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos B Reguladores/metabolismo , Interleucina-10/metabolismo , Subunidade p35 da Interleucina-12/metabolismo , Animais , Proliferação de Células , Terapia de Imunossupressão , Subunidade beta 2 de Receptor de Interleucina-12/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Multimerização Proteica , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Uveíte/imunologia , Uveíte/patologia
12.
Mediators Inflamm ; 2016: 2939370, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27703302

RESUMO

Uveitis is a potentially sight-threatening disease characterized by repeated cycles of remission and recurrent inflammation. The JAK/STAT pathway regulates the differentiation of pathogenic Th1 and Th17 cells that mediate uveitis. A SOCS1 mimetic peptide (SOCS1-KIR) that inhibits JAK2/STAT1 pathways has recently been shown to suppress experimental autoimmune uveitis (EAU). However, it is not clear whether SOCS1-KIR ameliorated uveitis by targeting JAK/STAT pathways of pathogenic lymphocytes or via inhibition of macrophages and antigen-presenting cells that also enter the retina during EAU. To further investigate mechanisms that mediate SOCS1-KIR effects and evaluate the efficacy of SOCS1-KIR as an investigational drug for chronic uveitis, we induced EAU in rats by adoptive transfer of uveitogenic T-cells and monitored disease progression and severity by slit-lamp microscopy, histology, and optical coherence tomography. Topical administration of SOCS1-KIR ameliorated acute and chronic posterior uveitis by inhibiting Th17 cells and the recruitment of inflammatory cells into retina while promoting expansion of IL-10-producing Tregs. We further show that SOCS1-KIR conferred protection of resident retinal cells that play critical role in vision from cytotoxic effects of inflammatory cytokines by downregulating proapoptotic genes. Thus, SOCS1-KIR suppresses uveitis and confers neuroprotective effects and might be exploited as a noninvasive treatment for chronic uveitis.


Assuntos
Peptídeos/uso terapêutico , Proteína 1 Supressora da Sinalização de Citocina/química , Uveíte/tratamento farmacológico , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/metabolismo , Biomimética , Doença Crônica , Citometria de Fluxo , Janus Quinase 2/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Peptídeos/química , Ratos , Fator de Transcrição STAT1/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/metabolismo
13.
PLoS One ; 11(5): e0155420, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27171004

RESUMO

Interferon Regulatory Factor-8 (IRF8) is constitutively expressed in monocytes and B cell lineages and plays important roles in immunity to pathogens and cancer. Although IRF8 expression is induced in activated T cells, the functional relevance of IRF8 in T cell-mediated immunity is not well understood. In this study, we used mice with targeted deletion of Irf8 in T-cells (IRF8KO) to investigate the role of IRF8 in T cell-mediated responses during herpes simplex virus 1 (HSV-1) infection of the eye. In contrast to wild type mice, HSV-1-infected IRF8KO mice mounted a more robust anti-HSV-1 immune response, which included marked expansion of HSV-1-specific CD8+ T cells, increased infiltration of inflammatory cells into the cornea and trigeminal ganglia (TG) and enhanced elimination of virus within the trigeminal ganglion. However, the consequence of the enhanced immunological response was the development of ocular inflammation, limbitis, and neutrophilic infiltration into the cornea of HSV-1-infected IRF8KO mice. Surprisingly, we observed a marked increase in virus-specific memory precursor effector cells (MPEC) in IRF8KO mice, suggesting that IRF8 might play a role in regulating the differentiation of effector CD8+ T cells to the memory phenotype. Together, our data suggest that IRF8 might play a role in restraining excess lymphocyte proliferation. Thus, modulating IRF8 levels in T cells can be exploited therapeutically to prevent immune-mediated ocular pathology during autoimmune and infectious diseases of the eye.


Assuntos
Linfócitos T CD8-Positivos/patologia , Olho/patologia , Olho/virologia , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Fatores Reguladores de Interferon/metabolismo , Ativação Linfocitária/imunologia , Transferência Adotiva , Animais , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Memória Imunológica , Inflamação/complicações , Inflamação/imunologia , Inflamação/patologia , Integrinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores de Quimiocinas/metabolismo , Carga Viral
14.
Cytokine Growth Factor Rev ; 26(5): 587-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26279360

RESUMO

Cytokines coordinate the activities of innate and adaptive immune systems and the Interleukin 12 (IL-12) family of cytokines has emerged as critical regulators of immunity in infectious and autoimmune diseases. While some members (IL-12 and IL-23) are associated with the pathogenesis of chronic inflammatory diseases, others (IL-27 and IL-35) mitigate autoimmune diseases. Unlike IL-12, IL-23 and IL-27 that are produced mainly by antigen presenting cells, IL-35 is predominantly secreted by regulatory B (i35-Bregs) and T (iTR35) cells. The discovery that IL-35 can induce the conversion or expansion of lymphocytes to regulatory B and T cells has considerable implications for therapeutic use of autologous regulatory B and T cells in human diseases. Although our current understanding of the immunobiology of IL-35 or its subunits (p35 and Ebi3) is still rudimentary, our goal in this review is to summarize what we know about this enigmatic cytokine and its potential clinical use, particularly in the treatment of CNS autoimmune diseases.


Assuntos
Doenças Autoimunes do Sistema Nervoso/imunologia , Linfócitos B Reguladores/imunologia , Interleucinas/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes do Sistema Nervoso/patologia , Linfócitos B Reguladores/patologia , Humanos , Linfócitos T Reguladores/patologia
15.
J Immunol ; 195(4): 1480-8, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26163590

RESUMO

IFN regulatory factor 8 (IRF8) is constitutively expressed in monocytes and B cells and plays a critical role in the functional maturation of microglia cells. It is induced in T cells following Ag stimulation, but its functions are less well understood. However, recent studies in mice with T cell-specific Irf8 disruption under direction of the Lck promoter (LCK-IRF8KO) suggest that IRF8 directs a silencing program for Th17 differentiation, and IL-17 production is markedly increased in IRF8-deficient T cells. Paradoxically, loss of IRF8 in T cells has no effect on the development or severity of experimental autoimmune encephalomyelitis (EAE), although exacerbating colitis in a mouse colitis model. In contrast, mice with a macrophage/microglia-specific Irf8 disruption are resistant to EAE, further confounding our understanding of the roles of IRF8 in host immunity and autoimmunity. To clarify the role of IRF8 in autoimmune diseases, we have generated two mouse strains with targeted deletion of Irf8 in retinal cells, including microglial cells and a third mouse strain with targeted Irf8 deletion in T cells under direction of the nonpromiscuous, CD4 promoter (CD4-IRF8KO). In contrast to the report that IRF8 deletion in T cells has no effect on EAE, experimental autoimmune uveitis is exacerbated in CD4-IRF8KO mice and disease enhancement correlates with significant expansion of Th17 cells and a reduction in T regulatory cells. In contrast to CD4-IRF8KO mice, Irf8 deletion in retinal cells confers protection from uveitis, underscoring divergent and tissue-specific roles of IRF8 in host immunity. These results raise a cautionary note in the context of therapeutic targeting of IRF8.


Assuntos
Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Fatores Reguladores de Interferon/genética , Uveíte/genética , Uveíte/imunologia , Animais , Doenças Autoimunes/diagnóstico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Deleção de Genes , Mediadores da Inflamação/metabolismo , Fatores Reguladores de Interferon/deficiência , Fatores Reguladores de Interferon/metabolismo , Camundongos , Camundongos Knockout , Microglia/imunologia , Microglia/metabolismo , Retina/imunologia , Retina/metabolismo , Retina/patologia , Neurônios Retinianos/imunologia , Neurônios Retinianos/metabolismo , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Uveíte/diagnóstico
16.
J Autoimmun ; 62: 31-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26094775

RESUMO

Uveitis is a diverse group of potentially sight-threatening intraocular inflammatory diseases and pathology derives from sustained production of pro-inflammatory cytokines in the optical axis. Although topical or systemic steroids are effective therapies, their adverse effects preclude prolonged usage and are impetus for seeking alternative immunosuppressive agents, particularly for patients with refractory uveitis. In this study, we synthesized a 16 amino acid membrane-penetrating lipophilic suppressor of cytokine signaling 1 peptide (SOCS1-KIR) that inhibits JAK/STAT signaling pathways and show that it suppresses and ameliorates experimental autoimmune uveitis (EAU), the mouse model of human uveitis. Fundus images, histological and optical coherence tomography analysis of eyes showed significant suppression of clinical disease, with average clinical score of 0.5 compared to 2.0 observed in control mice treated with scrambled peptide. We further show that SOCS1-KIR conferred protection from ocular pathology by inhibiting the expansion of pathogenic Th17 cells and inhibiting trafficking of inflammatory cells into the neuroretina during EAU. Dark-adapted scotopic and photopic electroretinograms further reveal that SOCS1-KIR prevented decrement of retinal function, underscoring potential neuroprotective effects of SOCS1-KIR in uveitis. Importantly, SOCS1-KIR is non-toxic, suggesting that topical administration of SOCS1-Mimetics can be exploited as a non-invasive treatment for uveitis and for limiting cytokine-mediated pathology in other ocular inflammatory diseases including scleritis.


Assuntos
Anti-Inflamatórios/administração & dosagem , Peptídeos/administração & dosagem , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Uveíte/imunologia , Uveíte/metabolismo , Administração Tópica , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Angiofluoresceinografia , Imunidade , Camundongos , Retina/imunologia , Retina/metabolismo , Retina/patologia , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/química , Linfócitos T/imunologia , Linfócitos T/metabolismo , Uveíte/tratamento farmacológico , Uveíte/patologia
17.
Crit Rev Immunol ; 35(1): 49-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25746047

RESUMO

Neuroinflammation contributes to neuronal deficits in neurodegenerative CNS (central nervous system) autoimmune diseases, such as multiple sclerosis and uveitis. The major goal of most treatment modalities for CNS autoimmune diseases is to limit inflammatory responses in the CNS; immune-suppressive drugs are the therapy of choice. However, lifelong immunosuppression increases the occurrence of infections, nephrotoxicity, malignancies, cataractogenesis, and glaucoma, which can greatly impair quality of life for the patient. Biologics that target pathogenic T cells is an alternative approach that is gaining wide acceptance as indicated by the popularity of a variety of Food and Drug Administration (FDA)-approved anti-inflammatory compounds and humanized antibodies such as Zenapax, Etanercept, Remicade, anti-ICAM, rapamycin, or tacrolimus. B cells are also potential therapeutic targets because they provide costimulatory signals that activate pathogenic T cells and secrete cytokines that promote autoimmune pathology. B cells also produce autoreactive antibodies implicated in several organ-specific and systemic autoimmune diseases including lupus erythematosus, Graves' disease, and Hashimoto's thyroiditis. On the other hand, recent studies have led to the discovery of several regulatory B-cell (Breg) populations that suppress immune responses and autoimmune diseases. In this review, we present a brief overview of Breg phenotypes and in particular, the newly discovered IL35-producing regulatory B cell (i35-Breg). We discuss the critical roles played by i35-Bregs in regulating autoimmune diseases and the potential use of adoptive Breg therapy in CNS autoimmune diseases.


Assuntos
Doenças Autoimunes/imunologia , Subpopulações de Linfócitos B/imunologia , Linfócitos B Reguladores/imunologia , Doenças do Sistema Nervoso Central/imunologia , Imunoterapia Adotiva , Interleucinas/metabolismo , Animais , Autoanticorpos/imunologia , Doenças Autoimunes/terapia , Linfócitos B Reguladores/transplante , Doenças do Sistema Nervoso Central/terapia , Humanos , Inflamação Neurogênica
18.
Inflammation ; 38(2): 555-65, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24993154

RESUMO

Immunological responses to pathogens are stringently regulated in the eye to prevent excessive inflammation that damage ocular tissues and compromise vision. Suppressors of cytokine signaling (SOCS) regulate intensity/duration of inflammatory responses. We have used SOCS1-deficient mice and retina-specific SOCS1 transgenic rats to investigate roles of SOCS1 in ocular herpes simplex virus (HSV-1) infection and non-infectious uveitis. We also genetically engineered cell-penetrating SOCS proteins (membrane-translocating sequence (MTS)-SOCS1, MTS-SOCS3) and examined whether they can be used to inhibit inflammatory cytokines. Overexpression of SOCS1 in transgenic rat eyes attenuated ocular HSV-1 infection while SOCS1-deficient mice developed severe non-infectious anterior uveitis, suggesting that SOCS1 may contribute to mechanism of ocular immune privilege by regulating trafficking of inflammatory cells into ocular tissues. Furthermore, MTS-SOCS1 inhibited IFN-γ-induced signal transducers and activators of transcription 1 (STAT1) activation by macrophages while MTS-SOCS3 suppressed expansion of pathogenic Th17 cells that mediate uveitis, indicating that MTS-SOCS proteins maybe used to treat ocular inflammatory diseases of infectious or autoimmune etiology.


Assuntos
Infecções Oculares Virais/imunologia , Herpes Simples/imunologia , Fator de Transcrição STAT1/genética , Proteínas Supressoras da Sinalização de Citocina/genética , Uveíte Anterior/imunologia , Animais , Endotoxinas , Infecções Oculares Virais/microbiologia , Infecções Oculares Virais/virologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Interferon gama/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Transdução de Sinais/imunologia , Proteína 1 Supressora da Sinalização de Citocina , Proteínas Supressoras da Sinalização de Citocina/biossíntese , Células Th17/imunologia , Uveíte Anterior/microbiologia , Uveíte Anterior/virologia
19.
PLoS One ; 9(4): e95900, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24780906

RESUMO

Age-related macular degeneration (AMD) is a common yet complex retinal degeneration that causes irreversible central blindness in the elderly. Pathology is widely believed to follow loss of retinal pigment epithelium (RPE) and photoreceptor degeneration. Here we report aberrant expression of interleukin-17A (IL17A) and the receptor IL17RC in the macula of AMD patients. In vitro, IL17A induces RPE cell death characterized by the accumulation of cytoplasmic lipids and autophagosomes with subsequent activation of pro-apoptotic Caspase-3 and Caspase-9. This pathology is reduced by siRNA knockdown of IL17RC. IL17-dependent retinal degeneration in a mouse model of focal retinal degeneration can be prevented by gene therapy with adeno-associated virus vector encoding soluble IL17 receptor. This intervention rescues RPE and photoreceptors in a MAPK-dependent process. The IL17 pathway plays a key role in RPE and photoreceptor degeneration and could hold therapeutic potential in AMD.


Assuntos
Citocinas/antagonistas & inibidores , Interleucina-17/toxicidade , Degeneração Macular/prevenção & controle , Receptores de Interleucina-17/genética , Retina/efeitos dos fármacos , Transfecção , Dependovirus/genética , Vetores Genéticos , Humanos , Degeneração Macular/genética
20.
Lab Invest ; 94(6): 674-82, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24709779

RESUMO

Platelet-derived growth factor (PDGF)-C is a member of the PDGF family and is critical for neuronal survival in the central nervous system. We studied the possible survival and antiapoptotic effects of PDGF-C on focal retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) on C57BL/6N [Crb1(rd8)] (DKO rd8) background mice, a model for progressive and focal retinal degeneration. We found no difference in transcript and protein expression of PDGF-C in the retina between DKO rd8 mice and wild type (WT, C57BL/6N). Recombinant PDGF-CC protein (500 ng/eye) was injected intravitreally into the right eye of DKO rd8 mice with phosphate-buffered saline as controls into the left eye. The retinal effects of PDGF-C were assessed by fundoscopy, ocular histopathology, A2E levels, apoptotic molecule analysis, and direct flat mount retinal vascular labeling. We found that the PDGF-CC-treated eyes showed slower progression or attenuation of the focal retinal lesions, lesser photoreceptor and retinal pigment epithelial degeneration resulting in better-preserved photoreceptor structure. Lower expression of apoptotic molecules was detected in the PDGF-CC-treated eyes than in controls. In addition, no retinal neovascularization was observed after PDGF-CC treatment. Our results demonstrate that PDGF-C potently ameliorates photoreceptor degeneration via the suppression of apoptotic pathways without inducing retinal angiogenesis. The protective effects of PDGF-C suggest a novel alternative approach for potential age-related retinal degeneration treatment.


Assuntos
Apoptose/efeitos dos fármacos , Linfocinas/metabolismo , Linfocinas/farmacologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Retina/efeitos dos fármacos , Degeneração Retiniana/metabolismo , Animais , Linfocinas/análise , Linfocinas/genética , Camundongos , Camundongos Knockout , Neovascularização Patológica , Fator de Crescimento Derivado de Plaquetas/análise , Fator de Crescimento Derivado de Plaquetas/genética , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...