Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(20): e2400610121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713623

RESUMO

Chromatin replication is intricately intertwined with the recycling of parental histones to the newly duplicated DNA strands for faithful genetic and epigenetic inheritance. The transfer of parental histones occurs through two distinct pathways: leading strand deposition, mediated by the DNA polymerase ε subunits Dpb3/Dpb4, and lagging strand deposition, facilitated by the MCM helicase subunit Mcm2. However, the mechanism of the facilitation of Mcm2 transferring parental histones to the lagging strand while moving along the leading strand remains unclear. Here, we show that the deletion of Pol32, a nonessential subunit of major lagging-strand DNA polymerase δ, results in a predominant transfer of parental histone H3-H4 to the leading strand during replication. Biochemical analyses further demonstrate that Pol32 can bind histone H3-H4 both in vivo and in vitro. The interaction of Pol32 with parental histone H3-H4 is disrupted through the mutation of the histone H3-H4 binding domain within Mcm2. Our findings identify the DNA polymerase δ subunit Pol32 as a critical histone chaperone downstream of Mcm2, mediating the transfer of parental histones to the lagging strand during DNA replication.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , Proteínas de Saccharomyces cerevisiae , DNA Polimerase III/metabolismo , DNA Polimerase III/genética , Histonas/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , DNA Polimerase Dirigida por DNA/metabolismo
3.
Nucleic Acids Res ; 52(9): 5138-5151, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38554108

RESUMO

Recycling of parental histones is an important step in epigenetic inheritance. During DNA replication, DNA polymerase epsilon subunit DPB3/DPB4 and DNA replication helicase subunit MCM2 are involved in the transfer of parental histones to the leading and lagging strands, respectively. Single Dpb3 deletion (dpb3Δ) or Mcm2 mutation (mcm2-3A), which each disrupts one parental histone transfer pathway, leads to the other's predominance. However, the biological impact of the two histone transfer pathways on chromatin structure and DNA repair remains elusive. In this study, we used budding yeast Saccharomyces cerevisiae to determine the genetic and epigenetic outcomes from disruption of parental histone H3-H4 tetramer transfer. We found that a dpb3Δ mcm2-3A double mutant did not exhibit the asymmetric parental histone patterns caused by a single dpb3Δ or mcm2-3A mutation, suggesting that the processes by which parental histones are transferred to the leading and lagging strands are independent. Surprisingly, the frequency of homologous recombination was significantly lower in dpb3Δ, mcm2-3A and dpb3Δ mcm2-3A mutants, likely due to the elevated levels of free histones detected in the mutant cells. Together, these findings indicate that proper transfer of parental histones during DNA replication is essential for maintaining chromatin structure and that lower homologous recombination activity due to parental histone transfer defects is detrimental to cells.


Assuntos
Replicação do DNA , Histonas , Recombinação Homóloga , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Recombinação Homóloga/genética , Replicação do DNA/genética , Mutação , Cromatina/metabolismo , Cromatina/genética , DNA Polimerase II/metabolismo , DNA Polimerase II/genética , Epigênese Genética , Reparo do DNA
4.
Res Sq ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38352584

RESUMO

Background . Human hexokinase 2 ( HK2 ) plays an important role in regulating Warburg effect, which metabolizes glucose to lactate acid even in the presence of ample oxygen and provides intermediate metabolites to support cancer cell proliferation and tumor growth. HK2 overexpression has been observed in various types of cancers and targeting HK2 -driven Warburg effect has been suggested as a potential cancer therapeutic strategy. Given that epigenetic enzymes utilize metabolic intermediates as substrates or co-factors to carry out post-translational modification of DNA and histones in cells, we hypothesized that altering HK2 expression-mediated cellular glycolysis rates could impact the epigenome and, consequently, genome stability in yeast. To test this hypothesis, we established genetic models with different yeast hexokinase 2 ( HXK2) expression in Saccharomyces cerevisiae yeast cells and investigated the effect of HXK2 -dependent metabolism on parental nucleosome transfer, a key DNA replication-coupled epigenetic inheritance process, and chromatin stability. Results . By comparing the growth of mutant yeast cells carrying single deletion of hxk1Δ , hxk2Δ , or double-loss of hxk1Δ hxk2Δ to wild-type cells, we demonstrated that HXK2 is the dominant HXK in yeast cell growth. Surprisingly, manipulating HXK2 expression in yeast, whether through overexpression or deletion, had only a marginal impact on parental nucleosome assembly, but a noticeable trend with decrease chromatin instability. However, targeting yeast cells with 2-deoxy-D-glucose (2-DG), a HK2 inhibitor that has been proposed as an anti-cancer treatment, significantly increased chromatin instability. Conclusion . Our findings suggest that in yeast cells lacking HXK2 , alternative HXK s such as HXK1 or glucokinase 1 ( GLK1 ) play a role in supporting glycolysis at a level that adequately maintain epigenomic stability. While our study demonstrated an increase in epigenetic instability with 2-DG treatment, the observed effect seemed to occur independently of Hxk2-mediated glycolysis inhibition. Thus, additional research is needed to identify the molecular mechanism through which 2-DG influences chromatin stability.

5.
Nat Genet ; 55(9): 1555-1566, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37666989

RESUMO

Parental histones, the carriers of posttranslational modifications, are deposited evenly onto the replicating DNA of sister chromatids in a process dependent on the Mcm2 subunit of DNA helicase and the Pole3 subunit of leading-strand DNA polymerase. The biological significance of parental histone propagation remains unclear. Here we show that Mcm2-mutated or Pole3-deleted mouse embryonic stem cells (ESCs) display aberrant histone landscapes and impaired neural differentiation. Mutation of the Mcm2 histone-binding domain causes defects in pre-implantation development and embryonic lethality. ESCs with biased parental histone transfer exhibit increased epigenetic heterogeneity, showing altered histone variant H3.3 and H3K27me3 patterning at genomic sites regulating differentiation genes. Our results indicate that the lagging strand pattern of H3.3 leads to the redistribution of H3K27me3 in Mcm2-2A ESCs. We demonstrate that symmetric parental histone deposition to sister chromatids contributes to cellular differentiation and development.


Assuntos
Histonas , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Histonas/genética , Células-Tronco Embrionárias , Diferenciação Celular/genética , DNA Helicases
6.
Gastroenterology ; 165(6): 1458-1474, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37597632

RESUMO

BACKGROUND & AIMS: Although depletion of neuronal nitric oxide synthase (NOS1)-expressing neurons contributes to gastroparesis, stimulating nitrergic signaling is not an effective therapy. We investigated whether hypoxia-inducible factor 1α (HIF1A), which is activated by high O2 consumption in central neurons, is a Nos1 transcription factor in enteric neurons and whether stabilizing HIF1A reverses gastroparesis. METHODS: Mice with streptozotocin-induced diabetes, human and mouse tissues, NOS1+ mouse neuroblastoma cells, and isolated nitrergic neurons were studied. Gastric emptying of solids and volumes were determined by breath test and single-photon emission computed tomography, respectively. Gene expression was analyzed by RNA-sequencing, microarrays, immunoblotting, and immunofluorescence. Epigenetic assays included chromatin immunoprecipitation sequencing (13 targets), chromosome conformation capture sequencing, and reporter assays. Mechanistic studies used Cre-mediated recombination, RNA interference, and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated epigenome editing. RESULTS: HIF1A signaling from physiological intracellular hypoxia was active in mouse and human NOS1+ myenteric neurons but reduced in diabetes. Deleting Hif1a in Nos1-expressing neurons reduced NOS1 protein by 50% to 92% and delayed gastric emptying of solids in female but not male mice. Stabilizing HIF1A with roxadustat (FG-4592), which is approved for human use, restored NOS1 and reversed gastroparesis in female diabetic mice. In nitrergic neurons, HIF1A up-regulated Nos1 transcription by binding and activating proximal and distal cis-regulatory elements, including newly discovered super-enhancers, facilitating RNA polymerase loading and pause-release, and by recruiting cohesin to loop anchors to alter chromosome topology. CONCLUSIONS: Pharmacologic HIF1A stabilization is a novel, translatable approach to restoring nitrergic signaling and treating diabetic gastroparesis. The newly recognized effects of HIF1A on chromosome topology may provide insights into physioxia- and ischemia-related organ function.


Assuntos
Diabetes Mellitus Experimental , Gastroparesia , Animais , Feminino , Humanos , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Epigênese Genética , Gastroparesia/genética , Neurônios , Óxido Nítrico Sintase Tipo I
7.
Nat Commun ; 14(1): 3429, 2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301892

RESUMO

Faithful inheritance of parental histones is essential to maintain epigenetic information and cellular identity during cell division. Parental histones are evenly deposited onto the replicating DNA of sister chromatids in a process dependent on the MCM2 subunit of DNA helicase. However, the impact of aberrant parental histone partition on human disease such as cancer is largely unknown. In this study, we construct a model of impaired histone inheritance by introducing MCM2-2A mutation (defective in parental histone binding) in MCF-7 breast cancer cells. The resulting impaired histone inheritance reprograms the histone modification landscapes of progeny cells, especially the repressive histone mark H3K27me3. Lower H3K27me3 levels derepress the expression of genes associated with development, cell proliferation, and epithelial to mesenchymal transition. These epigenetic changes confer fitness advantages to some newly emerged subclones and consequently promote tumor growth and metastasis after orthotopic implantation. In summary, our results indicate that impaired inheritance of parental histones can drive tumor progression.


Assuntos
Transição Epitelial-Mesenquimal , Histonas , Humanos , Histonas/genética , Histonas/metabolismo , Epigênese Genética , DNA Helicases/metabolismo , Código das Histonas
8.
bioRxiv ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36711718

RESUMO

Recycling of parental histones is an important step in epigenetic inheritance. During DNA replication, DNA polymerase epsilon subunit DPB3/DPB4 and DNA replication helicase subunit MCM2 are involved in the transfer of parental histones to the leading and lagging DNA strands, respectively. Single Dpb3 deletion ( dpb3Δ ) or Mcm2 mutation ( mcm2-3A ), which each disrupt one parental histone transfer pathway, leads to the other's predominance. However, the impact of the two histone transfer pathways on chromatin structure and DNA repair remains elusive. In this study, we used budding yeast Saccharomyces cerevisiae to determine the genetic and epigenetic outcomes from disruption of parental histone H3-H4 tetramer transfer. We found that a dpb3Δ / mcm2-3A double mutant did not exhibit the single dpb3Δ and mcm2-3A mutants' asymmetric parental histone patterns, suggesting that the processes by which parental histones are transferred to the leading and lagging strands are independent. Surprisingly, the frequency of homologous recombination was significantly lower in dpb3Δ, mcm2-3A , and dpb3Δ / mcm2-3A mutants relative to the wild-type strain, likely due to the elevated levels of free histones detected in the mutant cells. Together, these findings indicate that proper transfer of parental histones to the leading and lagging strands during DNA replication is essential for maintaining chromatin structure and that high levels of free histones due to parental histone transfer defects are detrimental to cells.

9.
Blood Cancer J ; 12(7): 99, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778390

RESUMO

Constitutively activated B cell receptor (BCR) signaling is a primary biological feature of chronic lymphocytic leukemia (CLL). The biological events controlled by BCR signaling in CLL are not fully understood and need investigation. Here, by analysis of the chromatin states and gene expression profiles of CLL B cells from patients before and after Bruton's tyrosine kinase inhibitor (BTKi) ibrutinib treatment, we show that BTKi treatment leads to a decreased expression of APOBEC3 family genes by regulating the activity of their enhancers. BTKi treatment reduces enrichment of enhancer marks (H3K4me1 and H3K27ac) and chromatin accessibility at putative APOBEC3 enhancers. CRISPR-Cas9 directed deletion or inhibition of the putative APOBEC3 enhancers leads to reduced APOBEC3 expression. We further find that transcription factor NFATc1 couples BCR signaling with the APOBEC3 enhancer activity to control APOBEC3 expression. We also find that enhancer-regulated APOBEC3 expression contributes to replication stress in malignant B cells. In total we demonstrate a novel mechanism for BTKi suppression of APOBEC3 expression via direct enhancer regulation in an NFATc1-dependent manner, implicating BCR signaling as a potential regulator of leukemic genomic instability.


Assuntos
Desaminases APOBEC , Leucemia Linfocítica Crônica de Células B , Receptores de Antígenos de Linfócitos B , Desaminases APOBEC/biossíntese , Desaminases APOBEC/genética , Desaminases APOBEC/metabolismo , Cromatina , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/metabolismo
10.
Sci Adv ; 8(18): eabm6246, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35544640

RESUMO

During DNA replication, parental H3-H4 marked by H3K4me3 are transferred almost equally onto leading and lagging strands of DNA replication forks. Mutations in replicative helicase subunit, Mcm2 (Mcm2-3A), and leading strand DNA polymerase subunit, Dpb3 (dpb3∆), result in asymmetric distributions of H3K4me3 at replicating DNA strands immediately following DNA replication. Here, we show that mcm2-3A and dpb3∆ mutant cells markedly reduce the asymmetric distribution of H3K4me3 during cell cycle progression before mitosis. Furthermore, the restoration of a more symmetric distribution of H3K4me3 at replicating DNA strands in these mutant cells is driven by methylating nucleosomes without H3K4me3 by the H3K4 methyltransferase complex, COMPASS. Last, both gene transcription machinery and the binding of parental H3K4me3 by Spp1 subunit of the COMPASS complex help recruit the enzyme to chromatin for the restoration of the H3K4me3-marked state following DNA replication, shedding light on inheritance of this mark following DNA replication.


Assuntos
Código das Histonas , Histonas , DNA/genética , Replicação do DNA , Histonas/genética , Histonas/metabolismo
11.
Genetics ; 221(4)2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35471241

RESUMO

Eukaryotic Macrotransposons (MTns) can be formed by 2 nearby elements flanking a segment of host DNA. The maize Ac transposon can form Ac::MTns, but little is known about Ac::MTn transposition activities. Here, we studied 3 Ac::MTns at the maize p1 locus, each of which is composed of a segment of maize p1 genomic DNA (up to 15 kb) bounded by a fractured Ac element (fAc, 2039 bp), and a full-length Ac element in direct orientation. The resulting Ac::MTns are of 16, 16.5, and 22 kb total length. From these 3 Ac::MTns, we identified 10 independent cases of macrotransposition, and observed similar features of transposition between Ac::MTn and standard Ac/Ds, including characteristic excision footprints and insertion target site duplications. Nine out of the 10 Ac::MTn reinsertion targets were genetically linked to the donor sites, another similarity with Ac/Ds standard transposition. We also identified a MTn-like structure in the maize B73 reference genome and 5 NAM founder lines. The MTn in diverse lines is flanked by target site duplications, confirming the historic occurrence of MTn transposition during genome evolution. Our results show that Ac::MTns are capable of mobilizing segments of DNA long enough to include a typical full-length plant gene and in theory could erode gene colinearity in syntenic regions during plant genome evolution.


Assuntos
Elementos de DNA Transponíveis , Zea mays , Sequência de Bases , Elementos de DNA Transponíveis/genética , Genes de Plantas , Genoma de Planta , Zea mays/genética
12.
ACS Synth Biol ; 11(1): 16-25, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34965084

RESUMO

Chromatin structure contains critical epigenetic information in various forms, such as histone post-translational modifications (PTMs). The deposition of certain histone PTMs can remodel the chromatin structure, resulting in gene expression alteration. The epigenetic information carried by histone PTMs could be inherited by daughter cells to maintain the gene expression status. Recently, studies revealed that several conserved replisome proteins regulate the recycling of parental histones carrying epigenetic information in Saccharomyces cerevisiae. Hence, the proper recycling and deposition of parental histones onto newly synthesized DNA strands is presumed to be essential for epigenetic inheritance. Here, we first reviewed the fundamental mechanisms of epigenetic modification establishment and maintenance discovered within fungal models. Next, we discussed the functions of parental histone chaperones and the potential impacts of the parental histone recycling process on heterochromatin-mediated transcriptional silencing inheritance. Subsequently, we summarized novel synthetic biology approaches developed to analyze individual epigenetic components during epigenetic inheritance in fungal and mammalian systems. These newly emerged research paradigms enable us to dissect epigenetic systems in a bottom-up manner. Furthermore, we highlighted the approaches developed in this emerging field and discussed the potential applications of these engineered regulators to building synthetic epigenetic systems.


Assuntos
Cromatina , Histonas , Animais , Cromatina/genética , Epigênese Genética/genética , Epigenômica , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo , Mamíferos/genética , Processamento de Proteína Pós-Traducional/genética
13.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34531325

RESUMO

In response to DNA replication stress, DNA replication checkpoint kinase Mec1 phosphorylates Mrc1, which in turn activates Rad53 to prevent the generation of deleterious single-stranded DNA, a process that remains poorly understood. We previously reported that lagging-strand DNA synthesis proceeds farther than leading strand in rad53-1 mutant cells defective in replication checkpoint under replication stress, resulting in the exposure of long stretches of the leading-strand templates. Here, we show that asymmetric DNA synthesis is also observed in mec1-100 and mrc1-AQ cells defective in replication checkpoint but, surprisingly, not in mrc1∆ cells in which both DNA replication and checkpoint functions of Mrc1 are missing. Furthermore, depletion of either Mrc1 or its partner, Tof1, suppresses the asymmetric DNA synthesis in rad53-1 mutant cells. Thus, the DNA replication checkpoint pathway couples leading- and lagging-strand DNA synthesis by attenuating the replication function of Mrc1-Tof1 under replication stress.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Replicação do DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , Replicação do DNA/genética , DNA Fúngico/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo
15.
Mol Cell ; 72(1): 140-151.e3, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30244834

RESUMO

Although essential for epigenetic inheritance, the transfer of parental histone (H3-H4)2 tetramers that contain epigenetic modifications to replicating DNA strands is poorly understood. Here, we show that the Mcm2-Ctf4-Polα axis facilitates the transfer of parental (H3-H4)2 tetramers to lagging-strand DNA at replication forks. Mutating the conserved histone-binding domain of the Mcm2 subunit of the CMG (Cdc45-MCM-GINS) DNA helicase, which translocates along the leading-strand template, results in a marked enrichment of parental (H3-H4)2 on leading strand, due to the impairment of the transfer of parental (H3-H4)2 to lagging strands. Similar effects are observed in Ctf4 and Polα primase mutants that disrupt the connection of the CMG helicase to Polα that resides on lagging-strand template. Our results support a model whereby parental (H3-H4)2 complexes displaced from nucleosomes by DNA unwinding at replication forks are transferred by the CMG-Ctf4-Polα complex to lagging-strand DNA for nucleosome assembly at the original location.


Assuntos
DNA Polimerase III/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Epigênese Genética , Histonas/genética , Complexos Multiproteicos/genética , Nucleossomos/genética , Ligação Proteica , Saccharomyces cerevisiae/genética
16.
Science ; 361(6409): 1386-1389, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30115745

RESUMO

How parental histone (H3-H4)2 tetramers, the primary carriers of epigenetic modifications, are transferred onto leading and lagging strands of DNA replication forks for epigenetic inheritance remains elusive. Here we show that parental (H3-H4)2 tetramers are assembled into nucleosomes onto both leading and lagging strands, with a slight preference for lagging strands. The lagging-strand preference increases markedly in budding yeast cells lacking Dpb3 and Dpb4, two subunits of the leading strand DNA polymerase, Pol ε, owing to the impairment of parental (H3-H4)2 transfer to leading strands. Dpb3-Dpb4 binds H3-H4 in vitro and participates in the inheritance of heterochromatin. These results indicate that different proteins facilitate the transfer of parental (H3-H4)2 onto leading versus lagging strands and that Dbp3-Dpb4 plays an important role in this poorly understood process.


Assuntos
Replicação do DNA , Epigênese Genética , Histonas/metabolismo , Saccharomycetales/metabolismo , DNA/genética , DNA/metabolismo , DNA Polimerase II/genética , Deleção de Genes , Heterocromatina/química , Heterocromatina/metabolismo , Nucleossomos/metabolismo , Multimerização Proteica , Saccharomycetales/genética
17.
EMBO J ; 37(17)2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30065069

RESUMO

Generation of single-stranded DNA (ssDNA) is required for the template strand formation during DNA replication. Replication Protein A (RPA) is an ssDNA-binding protein essential for protecting ssDNA at replication forks in eukaryotic cells. While significant progress has been made in characterizing the role of the RPA-ssDNA complex, how RPA is loaded at replication forks remains poorly explored. Here, we show that the Saccharomyces cerevisiae protein regulator of Ty1 transposition 105 (Rtt105) binds RPA and helps load it at replication forks. Cells lacking Rtt105 exhibit a dramatic reduction in RPA loading at replication forks, compromised DNA synthesis under replication stress, and increased genome instability. Mechanistically, we show that Rtt105 mediates the RPA-importin interaction and also promotes RPA binding to ssDNA directly in vitro, but is not present in the final RPA-ssDNA complex. Single-molecule studies reveal that Rtt105 affects the binding mode of RPA to ssDNA These results support a model in which Rtt105 functions as an RPA chaperone that escorts RPA to the nucleus and facilitates its loading onto ssDNA at replication forks.


Assuntos
Genoma Fúngico , Instabilidade Genômica , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Chaperonas Moleculares/genética , Proteína de Replicação A/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
Methods Mol Biol ; 1672: 227-238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29043628

RESUMO

DNA replication initiates at DNA replication origins after unwinding of double-strand DNA(dsDNA) by replicative helicase to generate single-stranded DNA (ssDNA) templates for the continuous synthesis of leading-strand and the discontinuous synthesis of lagging-strand. Therefore, methods capable of detecting strand-specific information will likely yield insight into the association of proteins at leading and lagging strand of DNA replication forks and the regulation of leading and lagging strand synthesis during DNA replication. The enrichment and Sequencing of Protein-Associated Nascent DNA (eSPAN), which measure the relative amounts of proteins at nascent leading and lagging strands of DNA replication forks, is a step-wise procedure involving the chromatin immunoprecipitation (ChIP) of a protein of interest followed by the enrichment of protein-associated nascent DNA through BrdU immunoprecipitation. The isolated ssDNA is then subjected to strand-specific sequencing. This method can detect whether a protein is enriched at leading or lagging strand of DNA replication forks. In addition to eSPAN, two other strand-specific methods, (ChIP-ssSeq), which detects potential protein-ssDNA binding and BrdU-IP-ssSeq, which can measure synthesis of both leading and lagging strand, were developed along the way. These methods can provide strand-specific and complementary information about the association of the target protein with DNA replication forks as well as synthesis of leading and lagging strands genome wide. Below, we describe the detailed eSPAN, ChIP-ssSeq, and BrdU-IP-ssSeq protocols.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Moldes Genéticos , Imunoprecipitação da Cromatina/métodos , DNA de Cadeia Simples , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase em Tempo Real , Origem de Replicação
19.
Mol Cell ; 68(2): 446-455.e3, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29033319

RESUMO

The checkpoint kinase Rad53 is activated during replication stress to prevent fork collapse, an essential but poorly understood process. Here we show that Rad53 couples leading- and lagging-strand synthesis under replication stress. In rad53-1 cells stressed by dNTP depletion, the replicative DNA helicase, MCM, and the leading-strand DNA polymerase, Pol ε, move beyond the site of DNA synthesis, likely unwinding template DNA. Remarkably, DNA synthesis progresses further along the lagging strand than the leading strand, resulting in the exposure of long stretches of single-stranded leading-strand template. The asymmetric DNA synthesis in rad53-1 cells is suppressed by elevated levels of dNTPs in vivo, and the activity of Pol ε is compromised more than lagging-strand polymerase Pol δ at low dNTP concentrations in vitro. Therefore, we propose that Rad53 prevents the generation of excessive ssDNA under replication stress by coordinating DNA unwinding with synthesis of both strands.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , DNA Polimerase III/metabolismo , DNA Polimerase II/metabolismo , Replicação do DNA/fisiologia , DNA Fúngico/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2/genética , DNA Polimerase II/genética , DNA Polimerase III/genética , DNA Fúngico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
Mol Cell Biol ; 37(21)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28784720

RESUMO

Three DNA polymerases, polymerases α, δ, and ε (Pol α, Pol δ, and Pol ε), are responsible for eukaryotic genome duplication. When DNA replication stress is encountered, DNA synthesis stalls until the stress is ameliorated. However, it is not known whether there is a difference in the association of each polymerase with active and stalled replication forks. Here, we show that each DNA polymerase has a distinct pattern of association with active and stalled replication forks. Pol α is enriched at extending Okazaki fragments of active and stalled forks. In contrast, although Pol δ contacts the nascent lagging strands of active and stalled forks, it binds to only the matured (and not elongating) Okazaki fragments of stalled forks. Pol ε has greater contact with the nascent single-stranded DNA (ssDNA) of the leading strand on active forks than on stalled forks. We propose that the configuration of DNA polymerases at stalled forks facilitates the resumption of DNA synthesis after stress removal.


Assuntos
DNA Polimerase III/metabolismo , DNA Polimerase II/metabolismo , DNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples/metabolismo , Saccharomyces cerevisiae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...