Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38607721

RESUMO

N4-acetylcytidine (ac4C) is a post-transcriptional modification in mRNA that is critical in mRNA translation in terms of stability and regulation. In the past few years, numerous approaches employing convolutional neural networks (CNN) and Transformer have been proposed for the identification of ac4C sites, with each variety of approaches processing distinct characteristics. CNN-based methods excels at extracting local features and positional information, whereas Transformer-based ones stands out in establishing long-range dependencies and generating global representations. Given the importance of both local and global features in mRNA ac4C sites identification, we propose a novel method termed TransC-ac4C which combines CNN and Transformer together for enhancing the feature extraction capability and improving the identification accuracy. Five different feature encoding strategies (One-hot, NCP, ND, EIIP, and K-mer) are employed to generate the mRNA sequence representations, in which way the sequence attributes and physical and chemical properties of the sequences can be embedded. To strengthen the relevance of features, we construct a novel feature fusion method. Firstly, the CNN is employed to process five single features, stitch them together and feed them to the Transformer layer. Then, our approach employs CNN to extract local features and Transformer subsequently to establish global long-range dependencies among extracted features. We use 5-fold cross-validation to evaluate the model, and the evaluation indicators are significantly improved. The prediction accuracy of the two datasets is as high as 81.42.

2.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38483285

RESUMO

MOTIVATION: Drug-target interaction (DTI) prediction refers to the prediction of whether a given drug molecule will bind to a specific target and thus exert a targeted therapeutic effect. Although intelligent computational approaches for drug target prediction have received much attention and made many advances, they are still a challenging task that requires further research. The main challenges are manifested as follows: (i) most graph neural network-based methods only consider the information of the first-order neighboring nodes (drug and target) in the graph, without learning deeper and richer structural features from the higher-order neighboring nodes. (ii) Existing methods do not consider both the sequence and structural features of drugs and targets, and each method is independent of each other, and cannot combine the advantages of sequence and structural features to improve the interactive learning effect. RESULTS: To address the above challenges, a Multi-view Integrated learning Network that integrates Deep learning and Graph Learning (MINDG) is proposed in this study, which consists of the following parts: (i) a mixed deep network is used to extract sequence features of drugs and targets, (ii) a higher-order graph attention convolutional network is proposed to better extract and capture structural features, and (iii) a multi-view adaptive integrated decision module is used to improve and complement the initial prediction results of the above two networks to enhance the prediction performance. We evaluate MINDG on two dataset and show it improved DTI prediction performance compared to state-of-the-art baselines. AVAILABILITY AND IMPLEMENTATION: https://github.com/jnuaipr/MINDG.


Assuntos
Algoritmos , Redes Neurais de Computação
3.
Comput Biol Med ; 172: 108227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460308

RESUMO

Accurately predicting protein-ATP binding residues is critical for protein function annotation and drug discovery. Computational methods dedicated to the prediction of binding residues based on protein sequence information have exhibited notable advancements in predictive accuracy. Nevertheless, these methods continue to grapple with several formidable challenges, including limited means of extracting more discriminative features and inadequate algorithms for integrating protein and residue information. To address the problems, we propose ATP-Deep, a novel protein-ATP binding residues predictor. ATP-Deep harnesses the capabilities of unsupervised pre-trained language models and incorporates domain-specific evolutionary context information from homologous sequences. It further refines the embedding at the residue level through integration with corresponding protein-level information and employs a contextual-based co-attention mechanism to adeptly fuse multiple sources of features. The performance evaluation results on the benchmark datasets reveal that ATP-Deep achieves an AUC of 0.954 and 0.951, respectively, surpassing the performance of the state-of-the-art model. These findings underscore the effectiveness of assimilating protein-level information and deploying a contextual-based co-attention mechanism grounded in context to bolster the prediction performance of protein-ATP binding residues.


Assuntos
Algoritmos , Proteínas , Ligação Proteica , Proteínas/química , Sequência de Aminoácidos , Trifosfato de Adenosina
4.
J Chem Inf Model ; 64(4): 1407-1418, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38334115

RESUMO

Studying the effect of single amino acid variations (SAVs) on protein structure and function is integral to advancing our understanding of molecular processes, evolutionary biology, and disease mechanisms. Screening for deleterious variants is one of the crucial issues in precision medicine. Here, we propose a novel computational approach, TransEFVP, based on large-scale protein language model embeddings and a transformer-based neural network to predict disease-associated SAVs. The model adopts a two-stage architecture: the first stage is designed to fuse different feature embeddings through a transformer encoder. In the second stage, a support vector machine model is employed to quantify the pathogenicity of SAVs after dimensionality reduction. The prediction performance of TransEFVP on blind test data achieves a Matthews correlation coefficient of 0.751, an F1-score of 0.846, and an area under the receiver operating characteristic curve of 0.871, higher than the existing state-of-the-art methods. The benchmark results demonstrate that TransEFVP can be explored as an accurate and effective SAV pathogenicity prediction method. The data and codes for TransEFVP are available at https://github.com/yzh9607/TransEFVP/tree/master for academic use.


Assuntos
Algoritmos , Proteínas , Humanos , Proteínas/química , Sequência de Aminoácidos , Redes Neurais de Computação , Aminoácidos
5.
J Chem Inf Model ; 64(4): 1394-1406, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38349747

RESUMO

Nonsynonymous single-nucleotide polymorphisms (nsSNPs), implicated in over 6000 diseases, necessitate accurate prediction for expedited drug discovery and improved disease diagnosis. In this study, we propose FCMSTrans, a novel nsSNP predictor that innovatively combines the transformer framework and multiscale modules for comprehensive feature extraction. The distinctive attribute of FCMSTrans resides in a deep feature combination strategy. This strategy amalgamates evolutionary-scale modeling (ESM) and ProtTrans (PT) features, providing an understanding of protein biochemical properties, and position-specific scoring matrix, secondary structure, predicted relative solvent accessibility, and predicted disorder (PSPP) features, which are derived from four protein sequences and structure-oriented characteristics. This feature combination offers a comprehensive view of the molecular dynamics involving nsSNPs. Our model employs the transformer's self-attention mechanisms across multiple layers, extracting higher-level and abstract representations. Simultaneously, varied-level features are captured by multiscale convolutions, enriching feature abstraction at multiple echelons. Our comparative analyses with existing methodologies highlight significant improvements made possible by the integrated feature fusion approach adopted in FCMSTrans. This is further substantiated by performance assessments based on diverse data sets, such as PredictSNP, MMP, and PMD, with areas under the curve (AUCs) of 0.869, 0.819, and 0.693, respectively. Furthermore, FCMSTrans shows robustness and superiority by outperforming the current best predictor, PROVEAN, in a blind test conducted on a third-party data set, achieving an impressive AUC score of 0.7838. The Python code of FCMSTrans is available at https://github.com/gc212/FCMSTrans for academic usage.


Assuntos
Descoberta de Drogas , Fontes de Energia Elétrica , Sequência de Aminoácidos , Área Sob a Curva , Polimorfismo de Nucleotídeo Único
6.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38349057

RESUMO

Efficient and accurate recognition of protein-DNA interactions is vital for understanding the molecular mechanisms of related biological processes and further guiding drug discovery. Although the current experimental protocols are the most precise way to determine protein-DNA binding sites, they tend to be labor-intensive and time-consuming. There is an immediate need to design efficient computational approaches for predicting DNA-binding sites. Here, we proposed ULDNA, a new deep-learning model, to deduce DNA-binding sites from protein sequences. This model leverages an LSTM-attention architecture, embedded with three unsupervised language models that are pre-trained on large-scale sequences from multiple database sources. To prove its effectiveness, ULDNA was tested on 229 protein chains with experimental annotation of DNA-binding sites. Results from computational experiments revealed that ULDNA significantly improves the accuracy of DNA-binding site prediction in comparison with 17 state-of-the-art methods. In-depth data analyses showed that the major strength of ULDNA stems from employing three transformer language models. Specifically, these language models capture complementary feature embeddings with evolution diversity, in which the complex DNA-binding patterns are buried. Meanwhile, the specially crafted LSTM-attention network effectively decodes evolution diversity-based embeddings as DNA-binding results at the residue level. Our findings demonstrated a new pipeline for predicting DNA-binding sites on a large scale with high accuracy from protein sequence alone.


Assuntos
Análise de Dados , Idioma , Sítios de Ligação , Sequência de Aminoácidos , Bases de Dados Factuais
7.
ACS Omega ; 9(2): 2874-2883, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250405

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a growing concern for human lives worldwide. Anti-MRSA peptides act as potential antibiotic agents and play significant role to combat MRSA infection. Traditional laboratory-based methods for annotating Anti-MRSA peptides are although precise but quite challenging, costly, and time-consuming. Therefore, computational methods capable of identifying Anti-MRSA peptides accelerate the drug designing process for treating bacterial infections. In this study, we developed a novel sequence-based predictor "iMRSAPred" for screening Anti-MRSA peptides by incorporating energy estimation and physiochemical and sequential information. We successfully resolved the skewed imbalance phenomena by using synthetic minority oversampling technique plus Tomek link (SMOTETomek) algorithm. Furthermore, the Shapley additive explanation method was leveraged to analyze the impact of top-ranked features in the prediction task. We evaluated multiple machine learning algorithms, i.e., CatBoost, Cascade Deep Forest, Kernel and Tree Boosting, support vector machine, and HistGBoost classifiers by 10-fold cross-validation and independent testing. The proposed iMRSAPred method significantly improved the overall performance in terms of accuracy and Matthew's correlation coefficient (MCC) by 5.45 and 0.083%, respectively, on the training data set. On the independent data set, iMRSAPred improved accuracy and MCC by 3.98 and 0.055%, respectively. We believe that the proposed method would be useful in large-scale Anti-MRSA peptide prediction and provide insights into other bioactive peptides.

8.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38261340

RESUMO

The recent advances of single-cell RNA sequencing (scRNA-seq) have enabled reliable profiling of gene expression at the single-cell level, providing opportunities for accurate inference of gene regulatory networks (GRNs) on scRNA-seq data. Most methods for inferring GRNs suffer from the inability to eliminate transitive interactions or necessitate expensive computational resources. To address these, we present a novel method, termed GMFGRN, for accurate graph neural network (GNN)-based GRN inference from scRNA-seq data. GMFGRN employs GNN for matrix factorization and learns representative embeddings for genes. For transcription factor-gene pairs, it utilizes the learned embeddings to determine whether they interact with each other. The extensive suite of benchmarking experiments encompassing eight static scRNA-seq datasets alongside several state-of-the-art methods demonstrated mean improvements of 1.9 and 2.5% over the runner-up in area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC). In addition, across four time-series datasets, maximum enhancements of 2.4 and 1.3% in AUROC and AUPRC were observed in comparison to the runner-up. Moreover, GMFGRN requires significantly less training time and memory consumption, with time and memory consumed <10% compared to the second-best method. These findings underscore the substantial potential of GMFGRN in the inference of GRNs. It is publicly available at https://github.com/Lishuoyy/GMFGRN.


Assuntos
Benchmarking , Redes Reguladoras de Genes , Área Sob a Curva , Aprendizagem , Redes Neurais de Computação
9.
J Chem Inf Model ; 64(3): 1043-1049, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38270339

RESUMO

The quickly increasing size of the Protein Data Bank is challenging biologists to develop a more scalable protein structure alignment tool for fast structure database search. Although many protein structure search algorithms and programs have been designed and implemented for this purpose, most require a large amount of computational time. We propose a novel protein structure search approach, TM-search, which is based on the pairwise structure alignment program TM-align and a new iterative clustering algorithm. Benchmark tests demonstrate that TM-search is 27 times faster than a TM-align full database search while still being able to identify ∼90% of all high TM-score hits, which is 2-10 times more than other existing programs such as Foldseek, Dali, and PSI-BLAST.


Assuntos
Algoritmos , Proteínas , Bases de Dados de Proteínas , Alinhamento de Sequência , Proteínas/química , Benchmarking , Software
10.
Bioinformatics ; 39(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37995291

RESUMO

MOTIVATION: RNA N6-methyladenosine (m6A) in Homo sapiens plays vital roles in a variety of biological functions. Precise identification of m6A modifications is thus essential to elucidation of their biological functions and underlying molecular-level mechanisms. Currently available high-throughput single-nucleotide-resolution m6A modification data considerably accelerated the identification of RNA modification sites through the development of data-driven computational methods. Nevertheless, existing methods have limitations in terms of the coverage of single-nucleotide-resolution cell lines and have poor capability in model interpretations, thereby having limited applicability. RESULTS: In this study, we present CLSM6A, comprising a set of deep learning-based models designed for predicting single-nucleotide-resolution m6A RNA modification sites across eight different cell lines and three tissues. Extensive benchmarking experiments are conducted on well-curated datasets and accordingly, CLSM6A achieves superior performance than current state-of-the-art methods. Furthermore, CLSM6A is capable of interpreting the prediction decision-making process by excavating critical motifs activated by filters and pinpointing highly concerned positions in both forward and backward propagations. CLSM6A exhibits better portability on similar cross-cell line/tissue datasets, reveals a strong association between highly activated motifs and high-impact motifs, and demonstrates complementary attributes of different interpretation strategies. AVAILABILITY AND IMPLEMENTATION: The webserver is available at http://csbio.njust.edu.cn/bioinf/clsm6a. The datasets and code are available at https://github.com/zhangying-njust/CLSM6A/.


Assuntos
Nucleotídeos , RNA , Humanos , RNA/metabolismo , Adenosina/genética , Adenosina/metabolismo , Análise de Sequência de RNA/métodos
11.
J Chem Inf Model ; 63(22): 7239-7257, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37947586

RESUMO

Understanding the pathogenicity of missense mutation (MM) is essential for shed light on genetic diseases, gene functions, and individual variations. In this study, we propose a novel computational approach, called MMPatho, for enhancing missense mutation pathogenic prediction. First, we established a large-scale nonredundant MM benchmark data set based on the entire Ensembl database, complemented by a focused blind test set specifically for pathogenic GOF/LOF MM. Based on this data set, for each mutation, we utilized Ensembl VEP v104 and dbNSFP v4.1a to extract variant-level, amino acid-level, individuals' outputs, and genome-level features. Additionally, protein sequences were generated using ENSP identifiers with the Ensembl API, and then encoded. The mutant sites' ESM-1b and ProtTrans-T5 embeddings were subsequently extracted. Then, our model group (MMPatho) was developed by leveraging upon these efforts, which comprised ConsMM and EvoIndMM. To be specific, ConsMM employs individuals' outputs and XGBoost with SHAP explanation analysis, while EvoIndMM investigates the potential enhancement of predictive capability by incorporating evolutionary information from ESM-1b and ProtT5-XL-U50, large protein language embeddings. Through rigorous comparative experiments, both ConsMM and EvoIndMM were capable of achieving remarkable AUROC (0.9836 and 0.9854) and AUPR (0.9852 and 0.9902) values on the blind test set devoid of overlapping variations and proteins from the training data, thus highlighting the superiority of our computational approach in the prediction of MM pathogenicity. Our Web server, available at http://csbio.njust.edu.cn/bioinf/mmpatho/, allows researchers to predict the pathogenicity (alongside the reliability index score) of MMs using the ConsMM and EvoIndMM models and provides extensive annotations for user input. Additionally, the newly constructed benchmark data set and blind test set can be accessed via the data page of our web server.


Assuntos
Biologia Computacional , Mutação de Sentido Incorreto , Humanos , Reprodutibilidade dos Testes , Consenso , Proteínas
12.
Comput Biol Med ; 166: 107529, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37748220

RESUMO

Accurate identification of inter-chain contacts in the protein complex is critical to determine the corresponding 3D structures and understand the biological functions. We proposed a new deep learning method, ICCPred, to deduce the inter-chain contacts from the amino acid sequences of the protein complex. This pipeline was built on the designed deep residual network architecture, integrating the pre-trained language model with three multiple sequence alignments (MSAs) from different biological views. Experimental results on 709 non-redundant benchmarking protein complexes showed that the proposed ICCPred significantly increased inter-chain contact prediction accuracy compared to the state-of-the-art approaches. Detailed data analyses showed that the significant advantage of ICCPred lies in the utilization of pre-trained transformer language models which can effectively extract the complementary co-evolution diversity from three MSAs. Meanwhile, the designed deep residual network enhances the correlation between the co-evolution diversity and the patterns of inter-chain contacts. These results demonstrated a new avenue for high-accuracy deep-learning inter-chain contact prediction that is applicable to large-scale protein-protein interaction annotations from sequence alone.

13.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37561093

RESUMO

MOTIVATION: CircRNAs play a critical regulatory role in physiological processes, and the abnormal expression of circRNAs can mediate the processes of diseases. Therefore, exploring circRNAs-disease associations is gradually becoming an important area of research. Due to the high cost of validating circRNA-disease associations using traditional wet-lab experiments, novel computational methods based on machine learning are gaining more and more attention in this field. However, current computational methods suffer to insufficient consideration of latent features in circRNA-disease interactions. RESULTS: In this study, a multilayer attention neural graph-based collaborative filtering (MLNGCF) is proposed. MLNGCF first enhances multiple biological information with autoencoder as the initial features of circRNAs and diseases. Then, by constructing a central network of different diseases and circRNAs, a multilayer cooperative attention-based message propagation is performed on the central network to obtain the high-order features of circRNAs and diseases. A neural network-based collaborative filtering is constructed to predict the unknown circRNA-disease associations and update the model parameters. Experiments on the benchmark datasets demonstrate that MLNGCF outperforms state-of-the-art methods, and the prediction results are supported by the literature in the case studies. AVAILABILITY AND IMPLEMENTATION: The source codes and benchmark datasets of MLNGCF are available at https://github.com/ABard0/MLNGCF.


Assuntos
Redes Neurais de Computação , RNA Circular , Aprendizado de Máquina , Software , Biologia Computacional/métodos
14.
IEEE/ACM Trans Comput Biol Bioinform ; 20(5): 3205-3214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37289599

RESUMO

It has been demonstrated that RNA modifications play essential roles in multiple biological processes. Accurate identification of RNA modifications in the transcriptome is critical for providing insights into the biological functions and mechanisms. Many tools have been developed for predicting RNA modifications at single-base resolution, which employ conventional feature engineering methods that focus on feature design and feature selection processes that require extensive biological expertise and may introduce redundant information. With the rapid development of artificial intelligence technologies, end-to-end methods are favorably received by researchers. Nevertheless, each well-trained model is only suitable for a specific RNA methylation modification type for nearly all of these approaches. In this study, we present MRM-BERT by feeding task-specific sequences into the powerful BERT (Bidirectional Encoder Representations from Transformers) model and implementing fine-tuning, which exhibits competitive performance to the state-of-the-art methods. MRM-BERT avoids repeated de novo training of the model and can predict multiple RNA modifications such as pseudouridine, m6A, m5C, and m1A in Mus musculus, Arabidopsis thaliana, and Saccharomyces cerevisiae. In addition, we analyse the attention heads to provide high attention regions for the prediction, and conduct saturated in silico mutagenesis of the input sequences to discover potential changes of RNA modifications, which can better assist researchers in their follow-up research.


Assuntos
Arabidopsis , Inteligência Artificial , Camundongos , Animais , Pseudouridina , Arabidopsis/genética , Transcriptoma , Saccharomyces cerevisiae/genética , RNA/genética
15.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37080771

RESUMO

Single-cell RNA sequencing (scRNA-seq) has significantly accelerated the experimental characterization of distinct cell lineages and types in complex tissues and organisms. Cell-type annotation is of great importance in most of the scRNA-seq analysis pipelines. However, manual cell-type annotation heavily relies on the quality of scRNA-seq data and marker genes, and therefore can be laborious and time-consuming. Furthermore, the heterogeneity of scRNA-seq datasets poses another challenge for accurate cell-type annotation, such as the batch effect induced by different scRNA-seq protocols and samples. To overcome these limitations, here we propose a novel pipeline, termed TripletCell, for cross-species, cross-protocol and cross-sample cell-type annotation. We developed a cell embedding and dimension-reduction module for the feature extraction (FE) in TripletCell, namely TripletCell-FE, to leverage the deep metric learning-based algorithm for the relationships between the reference gene expression matrix and the query cells. Our experimental studies on 21 datasets (covering nine scRNA-seq protocols, two species and three tissues) demonstrate that TripletCell outperformed state-of-the-art approaches for cell-type annotation. More importantly, regardless of protocols or species, TripletCell can deliver outstanding and robust performance in annotating different types of cells. TripletCell is freely available at https://github.com/liuyan3056/TripletCell. We believe that TripletCell is a reliable computational tool for accurately annotating various cell types using scRNA-seq data and will be instrumental in assisting the generation of novel biological hypotheses in cell biology.


Assuntos
Algoritmos , Análise de Célula Única , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica/métodos , Análise por Conglomerados
16.
J Chem Inf Model ; 63(3): 1044-1057, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36719781

RESUMO

Identification of the DNA-binding protein (DBP) helps dig out information embedded in the DNA-protein interaction, which is significant to understanding the mechanisms of DNA replication, transcription, and repair. Although existing computational methods for predicting the DBPs based on protein sequences have obtained great success, there is still room for improvement since the sequence-order information is not fully mined in these methods. In this study, a new three-part sequence-order feature extraction (called TPSO) strategy is developed to extract more discriminative information from protein sequences for predicting the DBPs. For each query protein, TPSO first divides its primary sequence features into N- and C-terminal fragments and then extracts the numerical pseudo features of three parts including the full sequence and these two fragments, respectively. Based on TPSO, a novel deep learning-based method, called TPSO-DBP, is proposed, which employs the sequence-based single-view features, the bidirectional long short-term memory (BiLSTM) and fully connected (FC) neural networks to learn the DBP prediction model. Empirical outcomes reveal that TPSO-DBP can achieve an accuracy of 87.01%, covering 85.30% of all DBPs, while achieving a Matthew's correlation coefficient value (0.741) that is significantly higher than most existing state-of-the-art DBP prediction methods. Detailed data analyses have indicated that the advantages of TPSO-DBP lie in the utilization of TPSO, which helps extract more concealed prominent patterns, and the deep neural network framework composed of BiLSTM and FC that learns the nonlinear relationships between input features and DBPs. The standalone package and web server of TPSO-DBP are freely available at https://jun-csbio.github.io/TPSO-DBP/.


Assuntos
Proteínas de Ligação a DNA , Redes Neurais de Computação , Proteínas de Ligação a DNA/metabolismo , Algoritmos , Sequência de Aminoácidos
17.
Anal Biochem ; 663: 115020, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36521558

RESUMO

X-ray crystallography is the major approach for atomic-level protein structure determination. Since not all proteins can be easily crystallized, accurate prediction of protein crystallization propensity is critical to guiding the experimental design and improving the success rate of X-ray crystallography experiments. In this work, we proposed a new deep learning pipeline, GCmapCrys, for multi-stage crystallization propensity prediction through integrating graph attention network with predicted protein contact map. Experimental results on 1548 proteins with known crystallization records demonstrated that GCmapCrys increased the value of Matthew's correlation coefficient by 37.0% in average compared to state-of-the-art protein crystallization propensity predictors. Detailed analyses show that the major advantages of GCmapCrys lie in the efficiency of the graph attention network with predicted contact map, which effectively associates the residue-interaction knowledge with crystallization pattern. Meanwhile, the designed four sequence-based features can be complementary to further enhance crystallization propensity proprediction.


Assuntos
Biologia Computacional , Proteínas , Cristalização/métodos , Proteínas/química , Cristalografia por Raios X , Biologia Computacional/métodos
18.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36528806

RESUMO

Determining the pathogenicity and functional impact (i.e. gain-of-function; GOF or loss-of-function; LOF) of a variant is vital for unraveling the genetic level mechanisms of human diseases. To provide a 'one-stop' framework for the accurate identification of pathogenicity and functional impact of variants, we developed a two-stage deep-learning-based computational solution, termed VPatho, which was trained using a total of 9619 pathogenic GOF/LOF and 138 026 neutral variants curated from various databases. A total number of 138 variant-level, 262 protein-level and 103 genome-level features were extracted for constructing the models of VPatho. The development of VPatho consists of two stages: (i) a random under-sampling multi-scale residual neural network (ResNet) with a newly defined weighted-loss function (RUS-Wg-MSResNet) was proposed to predict variants' pathogenicity on the gnomAD_NV + GOF/LOF dataset; and (ii) an XGBOD model was constructed to predict the functional impact of the given variants. Benchmarking experiments demonstrated that RUS-Wg-MSResNet achieved the highest prediction performance with the weights calculated based on the ratios of neutral versus pathogenic variants. Independent tests showed that both RUS-Wg-MSResNet and XGBOD achieved outstanding performance. Moreover, assessed using variants from the CAGI6 competition, RUS-Wg-MSResNet achieved superior performance compared to state-of-the-art predictors. The fine-trained XGBOD models were further used to blind test the whole LOF data downloaded from gnomAD and accordingly, we identified 31 nonLOF variants that were previously labeled as LOF/uncertain variants. As an implementation of the developed approach, a webserver of VPatho is made publicly available at http://csbio.njust.edu.cn/bioinf/vpatho/ to facilitate community-wide efforts for profiling and prioritizing the query variants with respect to their pathogenicity and functional impact.


Assuntos
Aprendizado Profundo , Humanos , Mutação com Ganho de Função , Genoma
19.
J Chem Inf Model ; 63(1): 397-405, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36579851

RESUMO

Accurate and efficient cell type annotation is essential for single-cell sequence analysis. Currently, cell type annotation using well-annotated reference datasets with powerful models has become increasingly popular. However, with the increasing amount of single-cell data, there is an urgent need to develop a novel annotation method that can integrate multiple reference datasets to improve cell type annotation performance. Since the unwanted batch effects between individual reference datasets, integrating multiple reference datasets is still an open challenge. To address this, we proposed scMDR and scMultiR, respectively, using multisource domain adaptation to learn cell type-specific information from multiple reference datasets and query cells. Based on the learned cell type-specific information, scMDR and scMultiR provide the most likely cell types for the query cells. Benchmark experiments demonstrated their state-of-the-art effectiveness for integrative single-cell assignment with multiple reference datasets.

20.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36413068

RESUMO

MOTIVATION: Over the past decades, a variety of in silico methods have been developed to predict protein subcellular localization within cells. However, a common and major challenge in the design and development of such methods is how to effectively utilize the heterogeneous feature sets extracted from bioimages. In this regards, limited efforts have been undertaken. RESULTS: We propose a new two-level stacked autoencoder network (termed 2L-SAE-SM) to improve its performance by integrating the heterogeneous feature sets. In particular, in the first level of 2L-SAE-SM, each optimal heterogeneous feature set is fed to train our designed stacked autoencoder network (SAE-SM). All the trained SAE-SMs in the first level can output the decision sets based on their respective optimal heterogeneous feature sets, known as 'intermediate decision' sets. Such intermediate decision sets are then ensembled using the mean ensemble method to generate the 'intermediate feature' set for the second-level SAE-SM. Using the proposed framework, we further develop a novel predictor, referred to as PScL-2LSAESM, to characterize image-based protein subcellular localization. Extensive benchmarking experiments on the latest benchmark training and independent test datasets collected from the human protein atlas databank demonstrate the effectiveness of the proposed 2L-SAE-SM framework for the integration of heterogeneous feature sets. Moreover, performance comparison of the proposed PScL-2LSAESM with current state-of-the-art methods further illustrates that PScL-2LSAESM clearly outperforms the existing state-of-the-art methods for the task of protein subcellular localization. AVAILABILITY AND IMPLEMENTATION: https://github.com/csbio-njust-edu/PScL-2LSAESM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Humanos , Transporte Proteico , Biologia Computacional/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...