Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 19184-19197, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564510

RESUMO

Perovskite cobaltites have emerged as archetypes for electrochemical control of materials properties in electrolyte-gate devices. Voltage-driven redox cycling can be performed between fully oxygenated perovskite and oxygen-vacancy-ordered brownmillerite phases, enabling exceptional modulation of the crystal structure, electronic transport, thermal transport, magnetism, and optical properties. The vast majority of studies, however, have focused heavily on the perovskite and brownmillerite end points. In contrast, here we focus on hysteresis and reversibility across the entire perovskite ↔ brownmillerite topotactic transformation, combining gate-voltage hysteresis loops, minor hysteresis loops, quantitative operando synchrotron X-ray diffraction, and temperature-dependent (magneto)transport, on ion-gel-gated ultrathin (10-unit-cell) epitaxial La0.5Sr0.5CoO3-δ films. Gate-voltage hysteresis loops combined with operando diffraction reveal a wealth of new mechanistic findings, including asymmetric redox kinetics due to differing oxygen diffusivities in the two phases, nonmonotonic transformation rates due to the first-order nature of the transformation, and limits on reversibility due to first-cycle structural degradation. Minor loops additionally enable the first rational design of an optimal gate-voltage cycle. Combining this knowledge, we demonstrate state-of-the-art nonvolatile cycling of electronic and magnetic properties, encompassing >105 transport ON/OFF ratios at room temperature, and reversible metal-insulator-metal and ferromagnet-nonferromagnet-ferromagnet cycling, all at 10-unit-cell thickness with high room-temperature stability. This paves the way for future work to establish the ultimate cycling frequency and endurance of such devices.

2.
Development ; 150(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37694610

RESUMO

Heparan sulfate (HS) and chondroitin sulfate (CS) are evolutionarily conserved glycosaminoglycans that are found in most animal species, including the genetically tractable model organism Drosophila. In contrast to extensive in vivo studies elucidating co-receptor functions of Drosophila HS proteoglycans (PGs), only a limited number of studies have been conducted for those of CSPGs. To investigate the global function of CS in development, we generated mutants for Chondroitin sulfate synthase (Chsy), which encodes the Drosophila homolog of mammalian chondroitin synthase 1, a crucial CS biosynthetic enzyme. Our characterizations of the Chsy mutants indicated that a fraction survive to adult stage, which allowed us to analyze the morphology of the adult organs. In the ovary, Chsy mutants exhibited altered stiffness of the basement membrane and muscle dysfunction, leading to a gradual degradation of the gross organ structure as mutant animals aged. Our observations show that normal CS function is required for the maintenance of the structural integrity of the ECM and gross organ architecture.


Assuntos
Sulfatos de Condroitina , Drosophila , Animais , Feminino , Drosophila/genética , Folículo Ovariano , Ovário , Glicosaminoglicanos , Mamíferos
3.
Nat Commun ; 14(1): 4151, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438330

RESUMO

Contrary to topological insulators, topological semimetals possess a nontrivial chiral anomaly that leads to negative magnetoresistance and are hosts to both conductive bulk states and topological surface states with intriguing transport properties for spintronics. Here, we fabricate highly-ordered metallic Pt3Sn and Pt3SnxFe1-x thin films via sputtering technology. Systematic angular dependence (both in-plane and out-of-plane) study of magnetoresistance presents surprisingly robust quadratic and linear negative longitudinal magnetoresistance features for Pt3Sn and Pt3SnxFe1-x, respectively. We attribute the anomalous negative longitudinal magnetoresistance to the type-II Dirac semimetal phase (pristine Pt3Sn) and/or the formation of tunable Weyl semimetal phases through symmetry breaking processes, such as magnetic-atom doping, as confirmed by first-principles calculations. Furthermore, Pt3Sn and Pt3SnxFe1-x show the promising performance for facilitating the development of advanced spin-orbit torque devices. These results extend our understanding of chiral anomaly of topological semimetals and can pave the way for exploring novel topological materials for spintronic devices.

4.
J Mol Biol ; 435(15): 168143, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150290

RESUMO

Retrovirus immature particle morphology consists of a membrane enclosed, pleomorphic, spherical and incomplete lattice of Gag hexamers. Previously, we demonstrated that human immunodeficiency virus type 2 (HIV-2) immature particles possess a distinct and extensive Gag lattice morphology. To better understand the nature of the continuously curved hexagonal Gag lattice, we have used the single particle cryo-electron microscopy method to determine the HIV-2 Gag lattice structure for immature virions. The reconstruction map at 5.5 Å resolution revealed a stable, wineglass-shaped Gag hexamer structure with structural features consistent with other lentiviral immature Gag lattice structures. Cryo-electron tomography provided evidence for nearly complete ordered Gag lattice structures in HIV-2 immature particles. We also solved a 1.98 Å resolution crystal structure of the carboxyl-terminal domain (CTD) of the HIV-2 capsid (CA) protein that identified a structured helix 12 supported via an interaction of helix 10 in the absence of the SP1 region of Gag. Residues at the helix 10-12 interface proved critical in maintaining HIV-2 particle release and infectivity. Taken together, our findings provide the first 3D organization of HIV-2 immature Gag lattice and important insights into both HIV Gag lattice stabilization and virus maturation.


Assuntos
HIV-2 , Vírion , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Humanos , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , HIV-2/química , Vírion/química , Montagem de Vírus
5.
Adv Funct Mater ; 23(18)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37200959

RESUMO

As a promising alternative to the mainstream CoFeB/MgO system with interfacial perpendicular magnetic anisotropy (PMA), L10-FePd and its synthetic antiferromagnet (SAF) structure with large crystalline PMA can support spintronic devices with sufficient thermal stability at sub-5 nm sizes. However, the compatibility requirement of preparing L10-FePd thin films on Si/SiO2 wafers is still unmet. In this paper, we prepare high-quality L10-FePd and its SAF on Si/SiO2 wafers by coating the amorphous SiO2 surface with an MgO(001) seed layer. The prepared L10-FePd single layer and SAF stack are highly (001)-textured, showing strong PMA, low damping, and sizeable interlayer exchange coupling, respectively. Systematic characterizations, including advanced X-ray diffraction measurement and atomic resolution-scanning transmission electron microscopy, are conducted to explain the outstanding performance of L10-FePd layers. A fully-epitaxial growth that starts from MgO seed layer, induces the (001) texture of L10-FePd, and extends through the SAF spacer is observed. This study makes the vision of scalable spintronics more practical.

6.
ACS Appl Mater Interfaces ; 12(36): 40607-40612, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805858

RESUMO

Understanding the impact of strain on organic semiconductors is important for the development of electronic devices and sensors that are subject to environmental changes and mechanical stimuli; it is also important for understanding the fundamental mechanisms of charge trapping. Following our previous study on the strain effects in rubrene, we present here only the second example of the strain-work function relationship in an organic semiconductor; in this case, the benchmark material tetracene. Thin, platelike single crystals of tetracene with large (001) facets were laminated onto silicon and rubber substrates having significantly different coefficients of thermal expansion; mechanical strain in tetracene was subsequently induced by varying the temperature of the assembly. Tensile and compressive strains parallel to the (001) major facet were measured by grazing incidence X-ray diffraction, and the corresponding shifts in the electronic work functions were recorded via scanning Kelvin probe microscopy (SKPM). The work function of the tetracene (001) crystal surface directly correlated with the net mechanical strain and increased by ∼100 meV for in-plane tensile strains of 0.1% and decreased by approximately the same amount for in-plane compressive strains of -0.1%. This work provides evidence of the general and important impact of strain on the electrical properties of van der Waals bonded crystalline organic semiconductors and thereby supports the hypothesis that heterogeneous strains, for example in thin films, can be a major source of static electronic disorder.

7.
Langmuir ; 36(13): 3393-3403, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32216370

RESUMO

Maintaining the integrity of cell membranes is indispensable for cellular viability. Poloxamer 188 (P188), a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer with a number-average molecular weight of 8700 g/mol and containing 80% by mass PEO, protects cell membranes from various external injuries and has the potential to be used as a therapeutic agent in diverse applications. The membrane protection mechanism associated with P188 is intimately connected with how this block copolymer interacts with the lipid bilayer, the main component of a cell membrane. Here, we report the distribution of P188 in a model lipid bilayer comprising 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) using neutron reflectivity (NR) and atomic force microscopy (AFM). We also investigated the association of a PEO homopolymer (PEO8.4K; Mn = 8400 g/mol) that does not protect living cell membranes. These experiments were conducted following incubation of a 4.5 mmol/L polymer solution in a buffer that mimics physiological conditions with supported POPC bilayer membranes followed by washing with the aqueous medium. In contrast to previous reports, which dealt with P188 and PEO in salt-free solutions, both P188 and PEO8.4K penetrate into the inner portion of the lipid bilayer as revealed by NR, with approximately 30% by volume occupancy across the membrane without loss of bilayer structural integrity. These results indicate that PEO is the chemical moiety that principally drives P188 binding to bilayer membranes. No defects or phase-separated domains were observed in either P188- or PEO8.4K-incubated lipid bilayers when examined by AFM, indicating that polymer chains mingle homogeneously with lipid molecules in the bilayer. Remarkably, the breakthrough force required for penetration of the AFM tip through the bilayer membrane is unaffected by the presence of the large amount of P188 and PEO8.4K.


Assuntos
Bicamadas Lipídicas , Propilenoglicóis , Polietilenoglicóis , Polímeros
8.
Nat Commun ; 9(1): 4327, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337539

RESUMO

A pivotal step toward understanding unconventional superconductors would be to decipher how superconductivity emerges from the unusual normal state. In the cuprates, traces of superconducting pairing appear above the macroscopic transition temperature Tc, yet extensive investigation has led to disparate conclusions. The main difficulty has been to separate superconducting contributions from complex normal-state behaviour. Here we avoid this problem by measuring nonlinear conductivity, an observable that is zero in the normal state. We uncover for several representative cuprates that the nonlinear conductivity vanishes exponentially above Tc, both with temperature and magnetic field, and exhibits temperature-scaling characterized by a universal scale Ξ0. Attempts to model the response with standard Ginzburg-Landau theory are systematically unsuccessful. Instead, our findings are captured by a simple percolation model that also explains other properties of the cuprates. We thus resolve a long-standing conundrum by showing that the superconducting precursor in the cuprates is strongly affected by intrinsic inhomogeneity.

9.
Sci Adv ; 2(8): e1600782, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27536726

RESUMO

Understanding the interplay between charge order (CO) and other phenomena (for example, pseudogap, antiferromagnetism, and superconductivity) is one of the central questions in the cuprate high-temperature superconductors. The discovery that similar forms of CO exist in both hole- and electron-doped cuprates opened a path to determine what subset of the CO phenomenology is universal to all the cuprates. We use resonant x-ray scattering to measure the CO correlations in electron-doped cuprates (La2-x Ce x CuO4 and Nd2-x Ce x CuO4) and their relationship to antiferromagnetism, pseudogap, and superconductivity. Detailed measurements of Nd2-x Ce x CuO4 show that CO is present in the x = 0.059 to 0.166 range and that its doping-dependent wave vector is consistent with the separation between straight segments of the Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166 but decreases at lower doping levels, indicating that it is not tied to the appearance of antiferromagnetic correlations or the pseudogap. Near optimal doping, where the CO wave vector is also consistent with a previously observed phonon anomaly, measurements of the CO below and above the superconducting transition temperature, or in a magnetic field, show that the CO is insensitive to superconductivity. Overall, these findings indicate that, although verified in the electron-doped cuprates, material-dependent details determine whether the CO correlations acquire sufficient strength to compete for the ground state of the cuprates.


Assuntos
Condutividade Elétrica , Elétrons , Modelos Teóricos , Temperatura
10.
Proc Natl Acad Sci U S A ; 110(30): 12235-40, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836669

RESUMO

Upon introducing charge carriers into the copper-oxygen sheets of the enigmatic lamellar cuprates, the ground state evolves from an insulator to a superconductor and eventually to a seemingly conventional metal (a Fermi liquid). Much has remained elusive about the nature of this evolution and about the peculiar metallic state at intermediate hole-carrier concentrations (p). The planar resistivity of this unconventional metal exhibits a linear temperature dependence (ρ ∝ T) that is disrupted upon cooling toward the superconducting state by the opening of a partial gap (the pseudogap) on the Fermi surface. Here, we first demonstrate for the quintessential compound HgBa2CuO4+δ a dramatic switch from linear to purely quadratic (Fermi liquid-like, ρ ∝ T(2)) resistive behavior in the pseudogap regime. Despite the considerable variation in crystal structures and disorder among different compounds, our result together with prior work gives insight into the p-T phase diagram and reveals the fundamental resistance per copper-oxygen sheet in both linear (ρ = A1T) and quadratic (ρ = A2T(2)) regimes, with A1 ∝ A2 ∝ 1/p. Theoretical models can now be benchmarked against this remarkably simple universal behavior. Deviations from this underlying behavior can be expected to lead to new insight into the nonuniversal features exhibited by certain compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...