Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Subcell Biochem ; 104: 485-501, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963497

RESUMO

Valosin-containing protein (VCP), also known as p97, is an evolutionarily conserved AAA+ ATPase essential for cellular homeostasis. Cooperating with different sets of cofactors, VCP is involved in multiple cellular processes through either the ubiquitin-proteasome system (UPS) or the autophagy/lysosomal route. Pathogenic mutations frequently found at the interface between the NTD domain and D1 ATPase domain have been shown to cause malfunction of VCP, leading to degenerative disorders including the inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia (IBMPFD), amyotrophic lateral sclerosis (ALS), and cancers. Therefore, VCP has been considered as a potential therapeutic target for neurodegeneration and cancer. Most of previous studies found VCP predominantly exists and functions as a hexamer, which unfolds and extracts ubiquitinated substrates from protein complexes for degradation. However, recent studies have characterized a new VCP dodecameric state and revealed a controlling mechanism of VCP oligomeric states mediated by the D2 domain nucleotide occupancy. Here, we summarize our recent knowledge on VCP oligomerization, regulation, and potential implications of VCP in cellular function and pathogenic progression.


Assuntos
Proteína com Valosina , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/química , Humanos , Multimerização Proteica , Animais , Mutação , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/química , Osteíte Deformante/genética , Osteíte Deformante/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/metabolismo , Distrofia Muscular do Cíngulo dos Membros
2.
Nat Commun ; 15(1): 2692, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538592

RESUMO

The Silent Information Regulator 2 (SIR2) protein is widely implicated in antiviral response by depleting the cellular metabolite NAD+. The defense-associated sirtuin 2 (DSR2) effector, a SIR2 domain-containing protein, protects bacteria from phage infection by depleting NAD+, while an anti-DSR2 protein (DSR anti-defense 1, DSAD1) is employed by some phages to evade this host defense. The NADase activity of DSR2 is unleashed by recognizing the phage tail tube protein (TTP). However, the activation and inhibition mechanisms of DSR2 are unclear. Here, we determine the cryo-EM structures of DSR2 in multiple states. DSR2 is arranged as a dimer of dimers, which is facilitated by the tetramerization of SIR2 domains. Moreover, the DSR2 assembly is essential for activating the NADase function. The activator TTP binding would trigger the opening of the catalytic pocket and the decoupling of the N-terminal SIR2 domain from the C-terminal domain (CTD) of DSR2. Importantly, we further show that the activation mechanism is conserved among other SIR2-dependent anti-phage systems. Interestingly, the inhibitor DSAD1 mimics TTP to trap DSR2, thus occupying the TTP-binding pocket and inhibiting the NADase function. Together, our results provide molecular insights into the regulatory mechanism of SIR2-dependent NAD+ depletion in antiviral immunity.


Assuntos
Sirtuínas , Sirtuínas/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , NAD/metabolismo , NAD+ Nucleosidase/metabolismo , Sirtuína 2/metabolismo , Ligação Proteica , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo
3.
Chembiochem ; 24(22): e202300401, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37710076

RESUMO

RNA-guided protease activity was recently discovered in the type III-E CRISPR-Cas systems (Craspase), providing a novel platform for engineering a protein probe instead of the commonly used nucleic acid probe in nucleic acid detection assays. Here, by adapting a fluorescence readout technique using the affinity- and fluorescent protein dual-tagged Csx30 protein substrate, we have established an assay monitoring Csx30 cleavage by target ssRNA-activated Craspase. Four Craspase-based nucleic acid detection systems for genes from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), norovirus, and the influenza virus (IFV) were reconstituted with demonstrated specificity. The assay could reliably detect target ssRNAs at concentrations down to 25 pM, which could be further improved approximately 15 000-fold (ca. 2 fM) by incorporating a recombinase polymerase isothermal preamplification step. Importantly, the species-specific substrate cleavage specificity of Craspase enabled multiplexed diagnosis, as demonstrated by the reconstituted composite systems for simultaneous detection of two genes from the same virus (SARS-CoV-2, spike and nsp12) or two types of viruses (SARS-CoV-2 and IFV). The assay could be further expanded by diversifying the fluorescent tags in the substrate and including Craspase systems from various species, thus potentially providing an easily adaptable platform for clinical diagnosis.


Assuntos
Bioensaio , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Corantes , RNA , SARS-CoV-2/genética , Peptídeo Hidrolases , Técnicas de Amplificação de Ácido Nucleico
4.
Nat Commun ; 14(1): 5191, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626079

RESUMO

Many of the currently available COVID-19 vaccines and therapeutics are not effective against newly emerged SARS-CoV-2 variants. Here, we developed the metallo-enzyme domain of angiotensin converting enzyme 2 (ACE2)-the cellular receptor of SARS-CoV-2-into an IgM-like inhalable molecule (HH-120). HH-120 binds to the SARS-CoV-2 Spike (S) protein with high avidity and confers potent and broad-spectrum neutralization activity against all known SARS-CoV-2 variants of concern. HH-120 was developed as an inhaled formulation that achieves appropriate aerodynamic properties for rodent and monkey respiratory system delivery, and we found that early administration of HH-120 by aerosol inhalation significantly reduced viral loads and lung pathology scores in male golden Syrian hamsters infected by the SARS-CoV-2 ancestral strain (GDPCC-nCoV27) and the Delta variant. Our study presents a meaningful advancement in the inhalation delivery of large biologics like HH-120 (molecular weight (MW) ~ 1000 kDa) and demonstrates that HH-120 can serve as an efficacious, safe, and convenient agent against SARS-CoV-2 variants. Finally, given the known role of ACE2 in viral reception, it is conceivable that HH-120 has the potential to be efficacious against additional emergent coronaviruses.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Masculino , Animais , Cricetinae , Humanos , Vacinas contra COVID-19 , SARS-CoV-2/genética , Mesocricetus , Imunoglobulina M
5.
Nucleic Acids Res ; 51(17): 9442-9451, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37587688

RESUMO

CRISPR-Cas systems act as the adaptive immune systems of bacteria and archaea, targeting and destroying invading foreign mobile genetic elements (MGEs) such as phages. MGEs have also evolved anti-CRISPR (Acr) proteins to inactivate the CRISPR-Cas systems. Recently, AcrIIC4, identified from Haemophilus parainfluenzae phage, has been reported to inhibit the endonuclease activity of Cas9 from Neisseria meningitidis (NmeCas9), but the inhibition mechanism is not clear. Here, we biochemically and structurally investigated the anti-CRISPR activity of AcrIIC4. AcrIIC4 folds into a helix bundle composed of three helices, which associates with the REC lobe of NmeCas9 and sgRNA. The REC2 domain of NmeCas9 is locked by AcrIIC4, perturbing the conformational dynamics required for the target DNA binding and cleavage. Furthermore, mutation of the key residues in the AcrIIC4-NmeCas9 and AcrIIC4-sgRNA interfaces largely abolishes the inhibitory effects of AcrIIC4. Our study offers new insights into the mechanism of AcrIIC4-mediated suppression of NmeCas9 and provides guidelines for the design of regulatory tools for Cas9-based gene editing applications.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Proteína 9 Associada à CRISPR/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes , Bactérias/genética , Bacteriófagos/genética
6.
PLoS Biol ; 21(7): e3002189, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37459330

RESUMO

Plant-associated bacteria play important regulatory roles in modulating plant hormone auxin levels, affecting the growth and yields of crops. A conserved auxin degradation (iad) operon was recently identified in the Variovorax genomes, which is responsible for root growth inhibition (RGI) reversion, promoting rhizosphere colonization and root growth. However, the molecular mechanism underlying auxin degradation by Variovorax remains unclear. Here, we systematically screened Variovorax iad operon products and identified 2 proteins, IadK2 and IadD, that directly associate with auxin indole-3-acetic acid (IAA). Further biochemical and structural studies revealed that IadK2 is a highly IAA-specific ATP-binding cassette (ABC) transporter solute-binding protein (SBP), likely involved in IAA uptake. IadD interacts with IadE to form a functional Rieske non-heme dioxygenase, which works in concert with a FMN-type reductase encoded by gene iadC to transform IAA into the biologically inactive 2-oxindole-3-acetic acid (oxIAA), representing a new bacterial pathway for IAA inactivation/degradation. Importantly, incorporation of a minimum set of iadC/D/E genes could enable IAA transformation by Escherichia coli, suggesting a promising strategy for repurposing the iad operon for IAA regulation. Together, our study identifies the key components and underlying mechanisms involved in IAA transformation by Variovorax and brings new insights into the bacterial turnover of plant hormones, which would provide the basis for potential applications in rhizosphere optimization and ecological agriculture.


Assuntos
Ácidos Indolacéticos , Rizosfera , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Bactérias/metabolismo , Óperon/genética
7.
Cell Res ; 33(9): 699-711, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37311833

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a central metabolite in cellular processes. Depletion of NAD+ has been demonstrated to be a prevalent theme in both prokaryotic and eukaryotic immune responses. Short prokaryotic Argonaute proteins (Agos) are associated with NADase domain-containing proteins (TIR-APAZ or SIR2-APAZ) encoded in the same operon. They confer immunity against mobile genetic elements, such as bacteriophages and plasmids, by inducing NAD+ depletion upon recognition of target nucleic acids. However, the molecular mechanisms underlying the activation of such prokaryotic NADase/Ago immune systems remain unknown. Here, we report multiple cryo-EM structures of NADase/Ago complexes from two distinct systems (TIR-APAZ/Ago and SIR2-APAZ/Ago). Target DNA binding triggers tetramerization of the TIR-APAZ/Ago complex by a cooperative self-assembly mechanism, while the heterodimeric SIR2-APAZ/Ago complex does not assemble into higher-order oligomers upon target DNA binding. However, the NADase activities of these two systems are unleashed via a similar closed-to-open transition of the catalytic pocket, albeit by different mechanisms. Furthermore, a functionally conserved sensor loop is employed to inspect the guide RNA-target DNA base pairing and facilitate the conformational rearrangement of Ago proteins required for the activation of these two systems. Overall, our study reveals the mechanistic diversity and similarity of Ago protein-associated NADase systems in prokaryotic immune response.


Assuntos
Proteínas Argonautas , NAD+ Nucleosidase , Proteínas Argonautas/metabolismo , NAD+ Nucleosidase/metabolismo , NAD/metabolismo , Bactérias/genética , DNA
8.
Autophagy ; 19(5): 1562-1581, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36300783

RESUMO

Overexpression of PTP4A phosphatases are associated with advanced cancers, but their biological functions are far from fully understood due to limited knowledge about their physiological substrates. VCP is implicated in lysophagy via collaboration with specific cofactors in the ELDR complex. However, how the ELDR complex assembly is regulated has not been determined. Moreover, the functional significance of the penultimate and conserved Tyr805 phosphorylation in VCP has not been established. Here, we use an unbiased substrate trapping and mass spectrometry approach and identify VCP/p97 as a bona fide substrate of PTP4A2. Biochemical studies show that PTP4A2 dephosphorylates VCP at Tyr805, enabling the association of VCP with its C-terminal cofactors UBXN6/UBXD1 and PLAA, which are components of the ELDR complex responsible for lysophagy, the autophagic clearance of damaged lysosomes. Functionally, PTP4A2 is required for cellular homeostasis by promoting lysophagy through facilitating ELDR-mediated K48-linked ubiquitin conjugate removal and autophagosome formation on the damaged lysosomes. Deletion of Ptp4a2 in vivo compromises the recovery of glycerol-injection induced acute kidney injury due to impaired lysophagy and sustained lysosomal damage. Taken together, our data establish PTP4A2 as a critical regulator of VCP and uncover an important role for PTP4A2 in maintaining lysosomal homeostasis through dephosphorylation of VCP at Tyr805. Our study suggests that PTP4A2 targeting could be a potential therapeutic approach to treat cancers and other degenerative diseases by modulating lysosomal homeostasis and macroautophagy/autophagy.Abbreviations: AAA+: ATPases associated with diverse cellular activities; AKI: acute kidney injury; CBB: Coomassie Brilliant Blue; CRISPR: clustered regularly interspaced short palindromic repeats; ELDR: endo-lysosomal damage response; GFP: green fluorescent protein; GST: glutathione S-transferase; IHC: immunohistochemistry; IP: immunoprecipitation; LAMP1: lysosomal-associated membrane protein 1; LC-MS: liquid chromatography-mass spectrometry; LGALS3/Gal3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; PLAA: phospholipase A2, activating protein; PTP4A2: protein tyrosine phosphatase 4a2; PUB: NGLY1/PNGase/UBA- or UBX-containing protein; PUL: PLAP, Ufd3, and Lub1; TFEB: transcription factor EB; UBXN6/UBXD1: UBX domain protein 6; UPS: ubiquitin-proteasome system; VCP/p97: valosin containing protein; VCPIP1: valosin containing protein interacting protein 1; YOD1: YOD1 deubiquitinase.


Assuntos
Proteínas Imediatamente Precoces , Macroautofagia , Animais , Camundongos , Autofagia/fisiologia , Proteína com Valosina/metabolismo , Fibroblastos/metabolismo , Proteínas/metabolismo , Ubiquitina/metabolismo , Lisossomos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Imediatamente Precoces/metabolismo
9.
Nucleic Acids Res ; 50(22): 12913-12923, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36484100

RESUMO

The type III-E CRISPR-Cas systems are newly identified adaptive immune systems in prokaryotes that use a single Cas7-11 protein to specifically cleave target RNA. Cas7-11 could associate with Csx29, a putative caspase-like protein encoded by the gene frequently found in the type III-E loci, suggesting a functional linkage between the RNase and protease activities in type III-E systems. Here, we demonstrated that target RNA recognition would stimulate the proteolytic activity of Csx29, and protein Csx30 is the endogenous substrate. More interestingly, while the cognate target RNA recognition would activate Csx29, non-cognate target RNA with the complementary 3' anti-tag sequence inhibits the enzymatic activity. Csx30 could bind to the sigma factor RpoE, which may initiate the stress response after proteolytic cleavage. Combined with biochemical and structural studies, we have elucidated the mechanisms underlying the target RNA-guided proteolytic activity of Csx29. Our work will guide further developments leveraging this simple RNA targeting system for RNA and protein-related applications.


Assuntos
Proteínas Associadas a CRISPR , RNA , RNA/genética , Sistemas CRISPR-Cas , Endorribonucleases/metabolismo , Ribonucleases/metabolismo , Peptídeo Hidrolases/genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo
10.
Nat Microbiol ; 7(12): 2078-2088, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36302881

RESUMO

The type III-E CRISPR-Cas system uses a single multidomain effector called Cas7-11 (also named gRAMP) to cleave RNA and associate with a caspase-like protease Csx29, showing promising potential for RNA-targeting applications. The structural and molecular mechanisms of the type III-E CRISPR-Cas system remain poorly understood. Here we report four cryo-electron microscopy structures of Cas7-11 at different functional states. Cas7-11 has four Cas7-like domains, which assemble into a helical filament to accommodate CRISPR RNA (crRNA), and a Cas11-like domain facilitating crRNA-target RNA duplex formation. The Cas7.1 domain is critical for crRNA maturation, whereas Cas7.2 and Cas7.3 are responsible for target RNA cleavage. Target RNA binding induces the structural arrangements of Csx29, potentially exposing the catalytic site of Csx29. These results delineate the molecular mechanisms underlying pre-crRNA processing, target RNA recognition and cleavage for Cas7-11, and provide a structural framework to understand the role of Csx29 in type III-E CRISPR system.


Assuntos
Sistemas CRISPR-Cas , Processamento Pós-Transcricional do RNA , Microscopia Crioeletrônica , Domínio Catalítico , RNA
11.
Nat Chem Biol ; 18(11): 1214-1223, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35982226

RESUMO

The E3 ligase TRIM7 has emerged as a critical player in viral infection and pathogenesis. However, the mechanism governing the TRIM7-substrate association remains to be defined. Here we report the crystal structures of TRIM7 in complex with 2C peptides of human enterovirus. Structure-guided studies reveal the C-terminal glutamine residue of 2C as the primary determinant for TRIM7 binding. Leveraged by this finding, we identify norovirus and SARS-CoV-2 proteins, and physiological proteins, as new TRIM7 substrates. Crystal structures of TRIM7 in complex with multiple peptides derived from SARS-CoV-2 proteins display the same glutamine-end recognition mode. Furthermore, TRIM7 could trigger the ubiquitination and degradation of these substrates, possibly representing a new Gln/C-degron pathway. Together, these findings unveil a common recognition mode by TRIM7, providing the foundation for further mechanistic characterization of antiviral and cellular functions of TRIM7.


Assuntos
COVID-19 , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Glutamina/metabolismo , SARS-CoV-2 , Ubiquitinação , Antivirais , Proteínas com Motivo Tripartido/metabolismo
12.
Nat Plants ; 8(7): 840-855, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798975

RESUMO

Non-photochemical quenching (NPQ) plays an important role for phototrophs in decreasing photo-oxidative damage. qH is a sustained form of NPQ and depends on the plastid lipocalin (LCNP). A thylakoid membrane-anchored protein SUPPRESSOR OF QUENCHING1 (SOQ1) prevents qH formation by inhibiting LCNP. SOQ1 suppresses qH with its lumen-located thioredoxin (Trx)-like and NHL domains. Here we report structural data, genetic modification and biochemical characterization of Arabidopsis SOQ1 lumenal domains. Our results show that the Trx-like and NHL domains are associated together, with the cysteine motif located at their interface. Residue E859, required for SOQ1 function, is pivotal for maintaining the Trx-NHL association. Importantly, the C-terminal region of SOQ1 forms an independent ß-stranded domain that has structural homology to the N-terminal domain of bacterial disulfide bond protein D and is essential for negative regulation of qH. Furthermore, SOQ1 is susceptible to cleavage at the loops connecting the neighbouring lumenal domains both in vitro and in vivo, which could be a regulatory process for its suppression function of qH.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Plastídeos/metabolismo , Tilacoides/metabolismo
13.
STAR Protoc ; 3(2): 101339, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496809

RESUMO

Valosin-containing protein (VCP, also known as p97/Cdc48) comprises six identical 97 kDa VCP protomers and functions as a master regulator of cellular homeostasis. VCP dodecamer in an apo nucleotide status was recently reported, providing a new framework for studying VCP's diverse biological functions. Here, we present a detailed protocol for purifying and cryo-EM structurally characterizing VCP dodecamers from both bacterial and mammalian cells. This protocol can also be adapted to yeast Cdc48. For complete details on the use and execution of this protocol, please refer to Yu et al. (2021).


Assuntos
Adenosina Trifosfatases , Proteínas de Ciclo Celular , Adenosina Trifosfatases/química , Animais , Proteínas de Ciclo Celular/química , Microscopia Crioeletrônica , Mamíferos/metabolismo , Proteína com Valosina/genética
14.
Nucleic Acids Res ; 50(1): 512-521, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34893860

RESUMO

Mobile genetic elements such as phages and plasmids have evolved anti-CRISPR proteins (Acrs) to suppress CRISPR-Cas adaptive immune systems. Recently, several phage and non-phage derived Acrs including AcrIIA17 and AcrIIA18 have been reported to inhibit Cas9 through modulation of sgRNA. Here, we show that AcrIIA17 and AcrIIA18 inactivate Cas9 through distinct mechanisms. AcrIIA17 inhibits Cas9 activity through interference with Cas9-sgRNA binary complex formation. In contrast, AcrIIA18 induces the truncation of sgRNA in a Cas9-dependent manner, generating a shortened sgRNA incapable of triggering Cas9 activity. The crystal structure of AcrIIA18, combined with mutagenesis studies, reveals a crucial role of the N-terminal ß-hairpin in AcrIIA18 for sgRNA cleavage. The enzymatic inhibition mechanism of AcrIIA18 is different from those of the other reported type II Acrs. Our results add new insights into the mechanistic understanding of CRISPR-Cas9 inhibition by Acrs, and also provide valuable information in the designs of tools for conditional manipulation of CRISPR-Cas9.


Assuntos
Bacteriófagos/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Virais/metabolismo
15.
iScience ; 24(11): 103310, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34765927

RESUMO

VCP/p97 is an evolutionarily conserved AAA+ ATPase important for cellular homeostasis. Previous studies suggest that VCP predominantly exists as a homohexamer. Here, we performed structural and biochemical characterization of VCP dodecamer, an understudied state of VCP. The structure revealed an apo nucleotide status that has rarely been captured, a tail-to-tail assembly of two hexamers, and the up-elevated N-terminal domains akin to that seen in the ATP-bound hexamer. Further analyses elucidated a nucleotide status-dependent dodecamerization mechanism, where nucleotide dissociation from the D2 AAA domains induces and promotes VCP dodecamerization. In contrast, nucleotide-free D1 AAA domains are associated with the up-rotation of N-terminal domains, which may prime D1 for ATP binding. These results therefore reveal new nucleotide status-dictated intra- and interhexamer conformational changes and suggest that modulation of D2 domain nucleotide occupancy may serve as a mechanism in controlling VCP oligomeric states.

16.
PLoS One ; 15(12): e0243576, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362213

RESUMO

BACKGROUND: Cross-sectional studies suggest an association between metabolic syndrome (MetS) and knee osteoarthritis (KOA). We performed a meta-analysis to evaluate whether MetS is an independent risk factor for KOA. METHODS: Prospective cohort studies evaluating the association between MetS and KOA in general population were retrieved from PubMed and Embase. Only studies with multivariate analyses were included. Data were pooled with a random-effect model, which is considered to incorporate heterogeneity among the included studies. RESULTS: Five studies including 94,965 participants were included, with 18,990 people with MetS (20.0%). With a mean follow-up duration of 14.5 years, 2,447 KOA cases occurred. Pooled results showed that MetS was not significant associated with an increased risk of KOA after controlling of factors including body mass index (adjusted risk ratio [RR]: 1.06, 95% CI: 0.92~1.23, p = 0.40; I2 = 33%). Subgroup analysis showed that MetS was independently associated with an increased risk of severe KOA that needed total knee arthroplasty (RR = 1.16, 95% CI: 1.03~1.30, p = 0.02), but not total symptomatic KOA (RR = 0.84, 95% CI: 0.65~1.08, p = 0.18). Stratified analyses suggested that MetS was independently associated with an increased risk of KOA in women (RR = 1.23, 95% CI: 1.03~1.47, p = 0.02), but not in men (RR = 0.90, 95% CI: 0.70~1.14, p = 0.37). CONCLUSIONS: Current evidence from prospective cohort studies did not support MetS was an independent risk factor of overall KOA in general population. However, MetS may be associated with an increased risk of severe KOA in general population, or overall KOA risk in women.


Assuntos
Síndrome Metabólica/complicações , Osteoartrite do Joelho/epidemiologia , Osteoartrite do Joelho/etiologia , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Incidência , Masculino , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/fisiopatologia , Pessoa de Meia-Idade , Osteoartrite do Joelho/cirurgia , Estudos Prospectivos , Fatores de Risco
17.
Proc Natl Acad Sci U S A ; 117(34): 20538-20548, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788364

RESUMO

Tumor suppressor PTEN (phosphatase and tensin homologue deleted on chromosome 10) levels are frequently found reduced in human cancers, but how PTEN is down-regulated is not fully understood. In addition, although a compelling connection exists between PRL (phosphatase of regenerating liver) 2 and cancer, how this phosphatase induces oncogenesis has been an enigma. Here, we discovered that PRL2 ablation inhibits PTEN heterozygosity-induced tumorigenesis. PRL2 deficiency elevates PTEN and attenuates AKT signaling, leading to decreased proliferation and increased apoptosis in tumors. We also found that high PRL2 expression is correlated with low PTEN level with reduced overall patient survival. Mechanistically, we identified PTEN as a putative PRL2 substrate and demonstrated that PRL2 down-regulates PTEN by dephosphorylating PTEN at Y336, thereby augmenting NEDD4-mediated PTEN ubiquitination and proteasomal degradation. Given the strong cancer susceptibility to subtle reductions in PTEN, the ability of PRL2 to down-regulate PTEN provides a biochemical basis for its oncogenic propensity. The results also suggest that pharmacological targeting of PRL2 could provide a novel therapeutic strategy to restore PTEN, thereby obliterating PTEN deficiency-induced malignancies.


Assuntos
Carcinogênese , Proteínas Imediatamente Precoces/fisiologia , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/fisiologia , Animais , Feminino , Células HEK293 , Humanos , Longevidade , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitinação
18.
BMC Public Health ; 20(1): 437, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245374

RESUMO

BACKGROUND: Nitrate is one of the most common chemical contaminants of groundwater, and it is an important unqualified factor of rural groundwater in Yantai. In order to assess the risk of exposure to drinking water nitrate for adults and juveniles, in recent years, we monitored the nitrate concentrations in rural drinking water,a model was also used to assess the human health risk of nitrate pollution in groundwater. METHODS: From the year 2015 to 2018, the drinking water in rural areas of Yantai was tested according to the "Sanitary Standard for Drinking Water" (GB5749-2006). The principal component analysis was used to analyze the relationship between groundwater chemicals and nitrate. The model was used to assess human health risks of groundwater nitrate through the drinking water and skin contact. RESULTS: A total of 2348 samples were tested during the year 2015-2018.Nitrate and total dissolved solids, total hardness, chloride are all relevant, the above indicators may come from the same source of pollution; The median nitrate content (CEXP50) was 17.8 mg / L; the risk of exposure in each group was ranked as: Juveniles > Adult female > Adult male;the median health risk (HQ50) for minors and adults exceed 1. CONCLUSIONS: The concentrations of nitrate is stable and does not change over time. The high concentration of nitrate in rural areas of Yantai may be the result of the interaction of fertilizers and geological factors. The risk of exposure to nitrate in juveniles and adults is above the limit, so it is necessary to be on the alert for the high levels of nitrate.


Assuntos
Água Potável/análise , Poluição Ambiental/análise , Água Subterrânea/análise , Nitratos/análise , Poluentes Químicos da Água/análise , Adulto , Criança , China , Monitoramento Ambiental , Feminino , Humanos , Masculino , Medição de Risco , População Rural
19.
Nanoscale ; 11(29): 13783-13789, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31211313

RESUMO

The naked DNA inside the nucleus interacts with proteins and RNAs forming a higher order chromatin structure to spatially and temporally control transcription in eukaryotic cells. The 30 nm chromatin fiber is one of the most important determinants of the regulation of eukaryotic transcription. However, the transition of chromatin from the 30 nm inactive higher order structure to the actively transcribed lower order nucleosomal arrays is unclear, which limits our understanding of eukaryotic transcription. Using a method to extract near-native eukaryotic chromatin, we revealed the chromatin structure at the transitional state from the 30 nm chromatin to multiple nucleosomal arrays by cryogenic electron tomography (cryo-ET). Reproducible electron microscopy images revealed that the transitional structure is a branching structure that the 30 nm chromatin hierarchically branches into lower order nucleosomal arrays, indicating chromatin compaction at different levels to control its accessibility during the interphase. We further observed that some of the chromatin fibers on the branching structure have a helix ribbon structure, while the others randomly twist together. Our finding of the chromatin helix ribbon structure on the extracted native chromatin revealed by cryo-ET indicates a complex higher order chromatin organization beyond the beads-on-a-string structure. The hierarchical branching and helix ribbon structure may provide mechanistic insights into how chromatin organization plays a central role in transcriptional regulation and other DNA-related biological processes during diseases such as cancer.


Assuntos
Cromatina/química , Microscopia Crioeletrônica , Cromatina/ultraestrutura , DNA/química , Humanos , Células MCF-7 , Nanopartículas de Magnetita/química
20.
Immunopharmacol Immunotoxicol ; 41(2): 185-191, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31072166

RESUMO

Rheumatoid arthritis (RA) is an autoimmune, chronic inflammatory disease and is characterized by destruction of the articular cartilage. A number of pro-inflammatory cytokines work sequentially and in concert with one another to induce the development of RA. IL-23, a member of IL-12 family, is composed of p19 and p40 subunits and it interacts with IL-23 receptor complex to trigger plethora of biochemical actions. A number of preclinical studies have shown the role of IL-23 in the development of RA in rodents. IL-23 receptor signaling is primarily linked to the activation of JAK-STAT, tyrosine kinase 2, NF-kB, and retinoic acid receptor-related orphan receptors. IL-23 produces its osteoclastogenic effects, mainly through IL-17 and Th17 cells suggesting the importance of IL-23/IL-17/Th17 in the joint inflammation and destruction in RA. Monoclonal antibodies targeted against IL-23, including tildrakizumab and guselkumab have been developed and evaluated in clinical trials. However, there are very limited clinical studies regarding the use of IL-23 modulators in RA patients. The present review discusses the different aspects of IL-23 including its structural features, signal transduction pathway, preclinical, and clinical role in RA.


Assuntos
Artrite Reumatoide/imunologia , Interleucina-23/imunologia , Receptores de Interleucina/imunologia , Transdução de Sinais/imunologia , Células Th17/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Ensaios Clínicos como Assunto , Humanos , Interleucina-17/imunologia , Transdução de Sinais/efeitos dos fármacos , Células Th17/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA