Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894964

RESUMO

ADP-Glc pyrophosphorylase (AGPase), which catalyzes the transformation of ATP and glucose-1-phosphate (Glc-1-P) into adenosine diphosphate glucose (ADP-Glc), acts as a rate-limiting enzyme in crop starch biosynthesis. Prior research has hinted at the regulation of AGPase by phosphorylation in maize. However, the identification and functional implications of these sites remain to be elucidated. In this study, we identified the phosphorylation site (serine at the 31st position of the linear amino acid sequence) of the AGPase large subunit (Sh2) using iTRAQTM. Subsequently, to ascertain the impact of Sh2 phosphorylation on AGPase, we carried out site-directed mutations creating Sh2-S31A (serine residue replaced with alanine) to mimic dephosphorylation and Sh2-S31D (serine residue replaced with aspartic acid) or Sh2-S31E (serine residue replaced with glutamic acid) to mimic phosphorylation. Preliminary investigations were performed to determine Sh2 subcellular localization, its interaction with Bt2, and the resultant AGPase enzymatic activity. Our findings indicate that phosphorylation exerts no impact on the stability or localization of Sh2. Furthermore, none of these mutations at the S31 site of Sh2 seem to affect its interaction with Bt2 (smaller subunit). Intriguingly, all S31 mutations in Sh2 appear to enhance AGPase activity when co-transfected with Bt2, with Sh2-S31E demonstrating a substantial five-fold increase in AGPase activity compared to Sh2. These novel insights lay a foundational groundwork for targeted improvements in AGPase activity, thus potentially accelerating the production of ADP-Glc (the primary substrate for starch synthesis), promising implications for improved starch biosynthesis, and holding the potential to significantly impact agricultural practices.


Assuntos
Amido , Amido/metabolismo , Fosforilação , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Sequência de Aminoácidos , Difosfato de Adenosina/metabolismo
2.
Plants (Basel) ; 12(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765369

RESUMO

Starch phosphorylase (PHO) is a pivotal enzyme within the GT35-glycogen-phosphorylase (GT; glycosyltransferases) superfamily. Despite the ongoing debate surrounding the precise role of PHO1, evidence points to its substantial influence on starch biosynthesis, supported by its gene expression profile and subcellular localization. Key to PHO1 function is the enzymatic regulation via phosphorylation; a myriad of such modification sites has been unveiled in model crops. However, the functional implications of these sites remain to be elucidated. In this study, we utilized site-directed mutagenesis on the phosphorylation sites of Zea mays PHO1, replacing serine residues with alanine, glutamic acid, and aspartic acid, to discern the effects of phosphorylation. Our findings indicate that phosphorylation exerts no impact on the stability or localization of PHO1. Nonetheless, our enzymatic assays unveiled a crucial role for phosphorylation at the S566 residue within the L80 region of the PHO1 structure, suggesting a potential modulation or enhancement of PHO1 activity. These data advance our understanding of starch biosynthesis regulation and present potential targets for crop yield optimization.

3.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298424

RESUMO

Black barley seeds are a health-beneficial diet resource because of their special chemical composition and antioxidant properties. The black lemma and pericarp (BLP) locus was mapped in a genetic interval of 0.807 Mb on chromosome 1H, but its genetic basis remains unknown. In this study, targeted metabolomics and conjunctive analyses of BSA-seq and BSR-seq were used to identify candidate genes of BLP and the precursors of black pigments. The results revealed that five candidate genes, purple acid phosphatase, 3-ketoacyl-CoA synthase 11, coiled-coil domain-containing protein 167, subtilisin-like protease, and caffeic acid-O-methyltransferase, of the BLP locus were identified in the 10.12 Mb location region on the 1H chromosome after differential expression analysis, and 17 differential metabolites, including the precursor and repeating unit of allomelanin, were accumulated in the late mike stage of black barley. Phenol nitrogen-free precursors such as catechol (protocatechuic aldehyde) or catecholic acids (caffeic, protocatechuic, and gallic acids) may promote black pigmentation. BLP can manipulate the accumulation of benzoic acid derivatives (salicylic acid, 2,4-dihydroxybenzoic acid, gallic acid, gentisic acid, protocatechuic acid, syringic acid, vanillic acid, protocatechuic aldehyde, and syringaldehyde) through the shikimate/chorismite pathway other than the phenylalanine pathway and alter the metabolism of the phenylpropanoid-monolignol branch. Collectively, it is reasonable to infer that black pigmentation in barley is due to allomelanin biosynthesis in the lemma and pericarp, and BLP regulates melanogenesis by manipulating the biosynthesis of its precursors.


Assuntos
Hordeum , Hordeum/genética , Hordeum/metabolismo , Melaninas/metabolismo , Catecóis/metabolismo
4.
Front Plant Sci ; 13: 943050, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909761

RESUMO

The process of starch biosynthesis is a major developmental event that affects the final grain yield and quality in maize (Zea mays L.), and transcriptional regulation plays a key role in modulating the expression of the main players in the pathway. ZmBt2, which encodes the small subunits of AGPase, is a rate-controlling gene of the pathway; however, much remains unknown about its transcriptional regulation. Our earlier study identifies a short functional fragment of ZmBt2 promoter (394-bp), and further shows it contains multiple putative cis-acting regulatory elements, demonstrating that several transcription factors may govern ZmBt2 expression. Here, we identified a novel TCP transcription factor (TF), ZmTCP7, that interacted with the functional fragment of the ZmBt2 promoter in a yeast one hybrid screening system. We further showed that ZmTCP7 is a non-autonomous TF targeted to the nucleus and predominantly expressed in maize endosperm. Using promoter deletion analyzes by transient expression in maize endosperm protoplasts combined with electrophoretic mobility shift assays, we found that ZmTCP7 bound to GAACCCCAC elements on the ZmBt2 promoter to suppress its expression. Transgenic overexpression of ZmTCP7 in maize caused a significant repression of ZmBt2 transcription by ~77.58%, resulting in a 21.51% decrease in AGPase activity and a 9.58% reduction in the endosperm starch content of transgenic maize. Moreover, the expressions of ZmBt1, ZmSSI, ZmSSIIa, and ZmSSIIIa were increased, while those of ZmSh2 and ZmSSIV reduced significantly in the endosperm of the transgenic maize. Overall, this study shows that ZmTCP7 functions as a transcriptional repressor of ZmBt2 and a negative regulator of endosperm starch accumulation, providing new insights into the regulatory networks that govern ZmBt2 expression and starch biosynthesis pathway in maize.

5.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562912

RESUMO

Starch phosphorylase (PHO) is a multimeric enzyme with two distinct isoforms: plastidial starch phosphorylase (PHO1) and cytosolic starch phosphorylase (PHO2). PHO1 specifically resides in the plastid, while PHO2 is found in the cytosol. Both play a critical role in the synthesis and degradation of starch. This study aimed to report the detailed structure, function, and evolution of genes encoding PHO1 and PHO2 and their protein ligand-binding sites in eight monocots and four dicots. "True" orthologs of PHO1 and PHO2 of Oryza sativa were identified, and the structure of the enzyme at the protein level was studied. The genes controlling PHO2 were found to be more conserved than those controlling PHO1; the variations were mainly due to the variable sequence and length of introns. Cis-regulatory elements in the promoter region of both genes were identified, and the expression pattern was analyzed. The real-time quantitative polymerase chain reaction indicated that PHO2 was expressed in all tissues with a uniform pattern of transcripts, and the expression pattern of PHO1 indicates that it probably contributes to the starch biosynthesis during seed development in Zea mays. Under abscisic acid (ABA) treatment, PHO1 was found to be downregulated in Arabidopsis and Hordeum vulgare. However, we found that ABA could up-regulate the expression of both PHO1 and PHO2 within 12 h in Zea mays. In all monocots and dicots, the 3D structures were highly similar, and the ligand-binding sites were common yet fluctuating in the position of aa residues.


Assuntos
Arabidopsis , Magnoliopsida , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ligantes , Magnoliopsida/metabolismo , Fosforilases/metabolismo , Plastídeos/metabolismo , Amido/genética , Amido/metabolismo , Amido Fosforilase/metabolismo , Zea mays/genética , Zea mays/metabolismo
6.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638789

RESUMO

Starch phosphorylase is a member of the GT35-glycogen-phosphorylase superfamily. Glycogen phosphorylases have been researched in animals thoroughly when compared to plants. Genetic evidence signifies the integral role of plastidial starch phosphorylase (PHO1) in starch biosynthesis in model plants. The counterpart of PHO1 is PHO2, which specifically resides in cytosol and is reported to lack L80 peptide in the middle region of proteins as seen in animal and maltodextrin forms of phosphorylases. The function of this extra peptide varies among species and ranges from the substrate of proteasomes to modulate the degradation of PHO1 in Solanum tuberosum to a non-significant effect on biochemical activity in Oryza sativa and Hordeum vulgare. Various regulatory functions, e.g., phosphorylation, protein-protein interactions, and redox modulation, have been reported to affect the starch phosphorylase functions in higher plants. This review outlines the current findings on the regulation of starch phosphorylase genes and proteins with their possible role in the starch biosynthesis pathway. We highlight the gaps in present studies and elaborate on the molecular mechanisms of phosphorylase in starch metabolism. Moreover, we explore the possible role of PHO1 in crop improvement.


Assuntos
Magnoliopsida/enzimologia , Plastídeos/enzimologia , Amido Fosforilase/metabolismo , Magnoliopsida/metabolismo , Amido/metabolismo
7.
BMC Plant Biol ; 21(1): 309, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210268

RESUMO

BACKGROUND: Phytohormone abscisic acid (ABA) is involved in the regulation of a wide range of biological processes. In Arabidopsis, it has been well-known that SnRK2s are the central components of the ABA signaling pathway that control the balance between plant growth and stress response, but the functions of ZmSnRK2 in maize are rarely reported. Therefore, the study of ZmSnRK2 is of great importance to understand the ABA signaling pathways in maize. RESULTS: In this study, 14 ZmSnRK2 genes were identified in the latest version of maize genome database. Phylogenetic analysis revealed that ZmSnRK2s are divided into three subclasses based on their diversity of C-terminal domains. The exon-intron structures, phylogenetic, synteny and collinearity analysis indicated that SnRK2s, especially the subclass III of SnRK2, are evolutionally conserved in maize, rice and Arabidopsis. Subcellular localization showed that ZmSnRK2 proteins are localized in the nucleus and cytoplasm. The RNA-Seq datasets and qRT-PCR analysis showed that ZmSnRK2 genes exhibit spatial and temporal expression patterns during the growth and development of different maize tissues, and the transcript levels of some ZmSnRK2 genes in kernel are significantly induced by ABA and sucrose treatment. In addition, we found that ZmSnRK2.10, which belongs to subclass III, is highly expressed in kernel and activated by ABA. Overexpression of ZmSnRK2.10 partially rescued the ABA-insensitive phenotype of snrk2.2/2.3 double and snrk2.2/2.3/2.6 triple mutants and led to delaying plant flowering in Arabidopsis. CONCLUSION: The SnRK2 gene family exhibits a high evolutionary conservation and has expanded with whole-genome duplication events in plants. The ZmSnRK2s expanded in maize with whole-genome and segmental duplication, not tandem duplication. The expression pattern analysis of ZmSnRK2s in maize offers important information to study their functions. Study of the functions of ZmSnRK.10 in Arabidopsis suggests that the ABA-dependent members of SnRK2s are evolutionarily conserved in plants. Our study elucidated the structure and evolution of SnRK2 genes in plants and provided a basis for the functional study of ZmSnRK2s protein in maize.


Assuntos
Ácido Abscísico/metabolismo , Genes de Plantas , Transdução de Sinais , Zea mays/genética , Zea mays/metabolismo , Arabidopsis/genética , Sequência de Bases , Núcleo Celular/metabolismo , Cromossomos de Plantas/genética , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Mutação/genética , Fenótipo , Filogenia , Transdução de Sinais/genética , Frações Subcelulares/metabolismo , Sintenia/genética
8.
PLoS One ; 16(3): e0244591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730027

RESUMO

Proper development of the maize kernel is of great significance for high and stable maize yield to ensure national food security. Gibberellin (GA), one of the hormones regulating plant growth, is involved in modulating the development of maize kernels. Cellulose, one of the main components of plant cells, is also regulated by gibberellin. The mechanism of hormone regulation during maize grain development is highly complicated, and reports on GA-mediated modulation of cellulose synthesis during maize grain development are rare. Our study revealed that during grain growth and development, the grain length and bulk density of GA-treated corn kernels improved significantly, and the cellulose content of grains increased, while seed coat thickness decreased. The transcription factor basic region/leucine zipper motif 53 (bZIP53), which is strongly correlated with cellulose synthase gene 1 (CesA1) expression, was screened by transcriptome sequencing and the expression of the cellulose synthase gene in maize grain development after GA treatment was determined. It was found that bZIP53 expression significantly promoted the expression of CesA1. Further, analysis of the transcription factor bZIP53 determined that the gene-encoded protein was localized in the cell and nuclear membranes, but the transcription factor bZIP53 itself showed no transcriptional activation. Further studies are required to explore the interaction of bZIP53 with CesA1.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Glucosiltransferases/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Celulose/metabolismo , Glucosiltransferases/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Sementes/metabolismo , Sementes/fisiologia , Ativação Transcricional/efeitos dos fármacos , Zea mays/genética
9.
Plant J ; 105(1): 108-123, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098697

RESUMO

Starch synthesis is an essential feature of crop filling, but knowledge of the molecular mechanisms regulating the expression of starch synthesis genes (SSGs) is currently limited to transcription factors (TFs). Here, we obtained transcriptome, small RNAome, and DNA methylome data from maize (Zea mays) endosperms during multiple developmental stages and established a regulatory network atlas of starch synthesis. Transcriptome analysis showed a sharp transition at 9-10 days after pollination, when genes involved in starch and sucrose metabolism are upregulated and starch accumulates rapidly. Expression pattern analysis established a comprehensive network between SSGs and TFs. During maize endosperm development, the miRNAs with preferential repression of the expression of TFs, particularly the TFs regulating SSG expression, were extensively downregulated. Specifically, ZmMYB138 and ZmMYB115 affected the transcriptional activities of Du1/Wx and Ae1/Bt2 genes at their respective promoter regions. Remarkably, the two TFs were negatively regulated by the copious expression of Zma-miR159k-3p at the post-transcriptional level. This suggests that miRNAs are important regulators of starch synthesis. Moreover, with the exclusion of the TFs, the expression of both SSGs and miRNAs was globally regulated by DNA methylation. Altogether, the present results (i) establish the regulatory functions of miRNAs and DNA methylation in starch synthesis and (ii) indicate that DNA methylation functions as a master switch.


Assuntos
Metilação de DNA , Endosperma/metabolismo , MicroRNAs/metabolismo , RNA de Plantas/metabolismo , Amido/biossíntese , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/genética
10.
Plant Methods ; 16: 96, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670388

RESUMO

BACKGROUND: Endosperm-trait related genes are associated with grain yield or quality in maize. There are vast numbers of these genes whose functions and regulations are still unknown. The biolistic system, which is often used for transient gene expression, is expensive and involves complex protocol. Besides, it cannot be used for simultaneous analysis of multiple genes. Moreover, the biolistic system has little physiological relevance when compared to cell-specific based system. Plant protoplasts are efficient cell-based systems which allow quick and simultaneous transient analysis of multiple genes. Typically, PEG-calcium mediated transfection of protoplast is simple and cost-effective. Notably, starch granules in cereal endosperm may diminish protoplast yield and integrity, if the isolation and transfection conditions are not accurately measured. Prior to this study, no PEG-calcium mediated endosperm protoplast system has been reported for cereal crop, perhaps, because endosperm cells accumulate starch grains. RESULTS: Here, we showed the uniqueness of maize endosperm-protoplast system (EPS) in conducting endosperm cell-based experiments. By using response surface designs, we established optimized conditions for the isolation and PEG-calcium mediated transfection of maize endosperm protoplasts. The optimized conditions of 1% cellulase, 0.75% macerozyme and 0.4 M mannitol enzymolysis solution for 6 h showed that more than 80% protoplasts remained viable after re-suspension in 1 ml MMG. The EPS was used to express GFP protein, analyze the subcellular location of ZmBT1, characterize the interaction of O2 and PBF1 by bimolecular fluorescent complementation (BiFC), and simultaneously analyze the regulation of ZmBt1 expression by ZmMYB14. CONCLUSIONS: The described optimized conditions proved efficient for reasonable yield of viable protoplasts from maize endosperm, and utility of the protoplast in rapid analysis of endosperm-trait related genes. The development of the optimized protoplast isolation and transfection conditions, allow the exploitation of the functional advantages of protoplast system over biolistic system in conducting endosperm-based studies (particularly, in transient analysis of genes and gene regulation networks, associated with the accumulation of endosperm storage products). Such analyses will be invaluable in characterizing endosperm-trait related genes whose functions have not been identified. Thus, the EPS will benefit the research of cereal grain yield and quality improvement.

11.
Mol Genet Genomics ; 295(1): 121-133, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31511973

RESUMO

Heterosis has been extensively applied for many traits during maize breeding, but there has been relatively little attention paid to the heterosis for kernel size. In this study, we evaluated a population of 301 recombinant inbred lines derived from a cross between 08-641 and YE478, as well as 298 hybrids from an immortalized F2 (IF2) population to detect quantitative trait loci (QTLs) for six kernel-related traits and the mid-parent heterosis (MPH) for these traits. A total of 100 QTLs, six pairs of loci with epistatic interactions, and five significant QTL × environment interactions were identified in both mapping populations. Seven QTLs accounted for over 10% of the phenotypic variation. Only four QTLs affected both the trait means and the MPH, suggesting the genetic mechanisms for kernel-related traits and the heterosis for kernel size are not completely independent. Moreover, more than half of the QTLs for each trait in the IF2 population exhibited dominance, implying that dominance is more important than other genetic effects for the heterosis for kernel-related traits. Additionally, 20 QTL clusters comprising 46 QTLs were detected across ten chromosomes. Specific chromosomal regions (bins 2.03, 6.04-6.05, and 9.01-9.02) exhibited pleiotropy and congruency across diverse heterotic patterns in previous studies. These results may provide additional insights into the genetic basis for the MPH for kernel-related traits.


Assuntos
Vigor Híbrido/genética , Locos de Características Quantitativas/genética , Zea mays/genética , Mapeamento Cromossômico/métodos , Cruzamentos Genéticos , Epistasia Genética/genética , Endogamia/métodos , Fenótipo
12.
BMC Plant Biol ; 19(1): 589, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881837

RESUMO

BACKGROUND: Short internodes contribute to plant dwarfism, which is exceedingly beneficial for crop production. However, the underlying mechanisms of internode elongation are complicated and have been not fully understood. RESULTS: Here, we report a maize dwarf mutant, dwarf2014 (d2014), which displays shortened lower internodes. Map-based cloning revealed that the d2014 gene is a novel br2 allele with a splicing variation, resulting in a higher expression of BR2-T02 instead of normal BR2-T01. Then, we found that the internode elongation in d2014/br2 exhibited a pattern of inhibition-normality-inhibition (transient for the ear-internode), correspondingly, at the 6-leaf, 12-leaf and 14-leaf stages. Indeed, BR2 encodes a P-glycoprotein1 (PGP1) protein that functions in auxin efflux, and our in situ hybridization assay showed that BR2 was mainly expressed in vascular bundles of the node and internode. Furthermore, significantly higher auxin concentration was detected in the stem apex of d2014 at the 6-leaf stage and strictly in the node region for the ear-internode at the 14-leaf stage. In such context, we propose that BR2/PGP1 transports auxin from node to internode through the vascular bundles, and excessive auxin accumulation in the node (immediately next to the intercalary meristem) region suppresses internode elongation of d2014. CONCLUSIONS: These findings suggest that low auxin levels mediated by BR2/PGP1 in the intercalary meristem region are crucial for internode elongation.


Assuntos
Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Proteínas de Plantas/fisiologia , Zea mays/crescimento & desenvolvimento , Subfamília B de Transportador de Cassetes de Ligação de ATP/fisiologia , Alelos , Transporte Biológico , Isoformas de Proteínas , Zea mays/genética , Zea mays/metabolismo
13.
Int J Mol Sci ; 20(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842349

RESUMO

Palmitic acid, the most common saturated free fatty acid, can lead to lipotoxicity and apoptosis when overloaded in non-fat cells. Palmitic acid accumulation can induce pancreatic ß-cell dysfunction and cardiac myocyte apoptosis. Under various cellular stresses, the activation of p53 signaling can lead to cell cycle arrest, DNA repair, senescence, or apoptosis, depending on the severity/type of stress. Nonetheless, the precise role of p53 in lipotoxicity induced by palmitic acid is not clear. Here, our results show that palmitic acid induces p53 activation in a dose- and time-dependent manner. Furthermore, loss of p53 makes cells sensitive to palmitic acid-induced apoptosis. These results were demonstrated in human colon carcinoma cells (HCT116) and primary mouse embryo fibroblasts (MEF) through analysis of DNA fragmentation, flow cytometry, colony formation, and Western blots. In the HCT116 p53-/- cell line, palmitic acid induced greater reactive oxygen species formation compared to the p53+/+ cell line. The reactive oxygen species (ROS) scavengers N-acetyl cysteine (NAC) and reduced glutathione (GSH) partially attenuated apoptosis in the HCT116 p53-/- cell line but had no obvious effect on the p53+/+ cell line. Furthermore, p53 induced the expression of its downstream target genes, p21 and Sesn2, in response to ROS induced by palmitic acid. Loss of p21 also leads to more palmitic acid-induced cell apoptosis in the HCT116 cell line compared with HCT116 p53+/+ and HCT116 p53-/-. In a mouse model of obesity, glucose tolerance test assays showed higher glucose levels in p53-/- mice that received a high fat diet compared to wild type mice that received the same diet. There were no obvious differences between p53-/- and p53+/+ mice that received a regular diet. We conclude that p53 may provide some protection against palmitic acid- induced apoptosis in cells by targeting its downstream genes in response to this stress.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Resistência a Medicamentos/genética , Ácido Palmítico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/deficiência , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Fibroblastos , Deleção de Genes , Células HCT116 , Humanos , Camundongos
14.
BMC Plant Biol ; 19(1): 392, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500559

RESUMO

BACKGROUND: Utilization of heterosis in maize could be critical in maize breeding for boosting grain yield. However, the genetic architecture of heterosis is not fully understood. To dissect the genetic basis of yield-related traits and heterosis in maize, 301 recombinant inbred lines derived from 08 to 641 × YE478 and 298 hybrids from the immortalized F2 (IF2) population were used to map quantitative trait loci (QTLs) for nine yield-related traits and mid-parent heterosis. RESULTS: We observed 156 QTLs, 28 pairs of loci with epistatic interaction, and 10 significant QTL × environment interactions in the inbred and hybrid mapping populations. The high heterosis in F1 and IF2 populations for kernel weight per ear (KWPE), ear weight per ear (EWPE), and kernel number per row (KNPR) matched the high percentages of QTLs (over 50%) for those traits exhibiting overdominance, whereas a notable predominance of loci with dominance effects (more than 70%) was observed for traits that show low heterosis such as cob weight per ear (CWPE), rate of kernel production (RKP), ear length (EL), ear diameter (ED), cob diameter, and row number (RN). The environmentally stable QTL qRKP3-2 was identified across two mapping populations, while qKWPE9, affecting the trait mean and the mid-parent heterosis (MPH) level, explained over 18% of phenotypic variations. Nine QTLs, qEWPE9-1, qEWPE10-1, qCWPE6, qEL8, qED2-2, qRN10-1, qKWPE9, qKWPE10-1, and qRKP4-3, accounted for over 10% of phenotypic variation. In addition, QTL mapping identified 95 QTLs that were gathered together and integrated into 33 QTL clusters on 10 chromosomes. CONCLUSIONS: The results revealed that (1) the inheritance of yield-related traits and MPH in the heterotic pattern improved Reid (PA) × Tem-tropic I (PB) is trait-dependent; (2) a large proportion of loci showed dominance effects, whereas overdominance also contributed to MPH for KNPR, EWPE, and KWPE; (3) marker-assisted selection for markers at genomic regions 1.09-1.11, 2.04, 3.08-3.09, and 10.04-10.05 contributed to hybrid performance per se and heterosis and were repeatedly reported in previous studies using different heterotic patterns is recommended.


Assuntos
Grão Comestível/genética , Vigor Híbrido/genética , Locos de Características Quantitativas , Zea mays/genética , Mapeamento Cromossômico , Grão Comestível/fisiologia , Epistasia Genética/genética , Zea mays/fisiologia
15.
Int J Mol Sci ; 20(4)2019 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-30813492

RESUMO

AGPase catalyzes a key rate-limiting step that converts ATP and Glc-1-p into ADP-glucose and diphosphate in maize starch biosynthesis. Previous studies suggest that AGPase is modulated by redox, thermal and allosteric regulation. However, the phosphorylation of AGPase is unclear in the kernel starch biosynthesis process. Phos-tagTM technology is a novel method using phos-tagTM agarose beads for separation, purification, and detection of phosphorylated proteins. Here we identified phos-tagTM agarose binding proteins from maize endosperm. Results showed a total of 1733 proteins identified from 10,678 distinct peptides. Interestingly, a total of 21 unique peptides for AGPase sub-unit Brittle-2 (Bt2) were identified. Bt2 was demonstrated by immunoblot when enriched maize endosperm protein with phos-tagTM agarose was in different pollination stages. In contrast, Bt2 would lose binding to phos-tagTM when samples were treated with alkaline phosphatase (ALP). Furthermore, Bt2 could be detected by Pro-Q diamond staining specifically for phosphorylated protein. We further identified the phosphorylation sites of Bt2 at Ser10, Thr451, and Thr462 by iTRAQ. In addition, dephosphorylation of Bt2 decreased the activity of AGPase in the native gel assay through ALP treatment. Taking together, these results strongly suggest that the phosphorylation of AGPase may be a new model to regulate AGPase activity in the starch biosynthesis process.


Assuntos
Endosperma/metabolismo , Glucose-1-Fosfato Adenililtransferase/metabolismo , Proteínas de Plantas/metabolismo , Subunidades Proteicas/metabolismo , Proteômica/métodos , Amido/biossíntese , Zea mays/metabolismo , Sequência de Aminoácidos , Anticorpos/metabolismo , Modelos Biológicos , Fosforilação , Proteínas de Plantas/química , Sefarose
16.
Mol Genet Genomics ; 294(2): 501-517, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30607602

RESUMO

MicroRNA164 (miR164) plays a key role in leaf and flower development, lateral root initiation, and stress responses. However, little is known about the regulatory roles of miR164 during seed development, particularly in maize. The aim of this study was to discover the developmental function of miR164 in maize seed. Small RNA sequencing (sRNA-seq) was performed at two key stages. The results indicated that miR164 was down-regulated during maize seed development. In addition, degradome library sequencing and transient expression assays identified the target genes for miR164. Two microRNA (miRNA) pairs, miR164-NAM, ATAF, and CUC32 (NAC32) and miR164-NAC40, were isolated. The developmental function of miR164 was determined by analyzing the differentially expressed genes (DEGs) between the wild-type and miR164 transgenic lines using RNA sequencing (RNA-seq) and by screening the DEGs related to NAC32 and NAC40 via co-expression and transient expression analysis. These results identified two beta-expansin genes, EXPB14 and EXPB15, which were located downstream of the NAC32 and NAC40 genes. This study revealed, for the first time, a miR164-dependent regulatory pathway, miR164-NAC32/NAC40-EXPB14/EXPB15, which participates in maize seed expansion. These findings highlight the significance of miR164 in maize seed development, and can be used to explore the role of miRNA in seed development.


Assuntos
MicroRNAs/genética , Raízes de Plantas/genética , Sementes/genética , Zea mays/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Sementes/crescimento & desenvolvimento , Análise de Sequência de RNA , Zea mays/crescimento & desenvolvimento
17.
Plant Sci ; 274: 332-340, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30080620

RESUMO

The accumulation of starch in cereal endosperm is a key process that determines crop yield and quality. Research has reported that sucrose and abscisic acid (ABA) synergistically regulate the synthesis of crop starch. However, little is known about the molecular mechanisms behind this synergistic effect. In this study, the effect of sucrose and ABA on starch synthesis in maize endosperm was investigated. The starch content, the ADP-Glc pyrophosphorylase (AGPase) concentration, and the expression of AGPase-encoding genes were found to be enhanced slightly by sucrose or ABA alone, but were elevated significantly by the co-treatment of sucrose and ABA. Truncation analysis of the Bt2 promoter via transient expression in maize endosperm showed that the promoter region (-370/-186) is involved in sucrose response, and that an adjacent region (-186/-43) responds to ABA. The synergistic induction of sucrose and ABA on Bt2 promoter activity requires interaction with both of these regions. Interestingly, removal of the sucrose-responsive region (-370 to -186) abolishes ABA responsiveness in the Bt2 promoter, even in the presence of ABA-responsive region (-186 to -43). This study provides novel insights into the regulatory mechanisms that underlie the synergistic regulation of starch synthesis and grain filling from sucrose and ABA in cereal endosperm.


Assuntos
Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Sacarose/metabolismo , Zea mays/genética , Sinergismo Farmacológico , Grão Comestível , Endosperma/genética , Proteínas de Plantas , Amido/metabolismo
18.
J Genet ; 97(1): 253-266, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29666344

RESUMO

Tassel architecture is an important trait in maize breeding and hybrid seed production. In this study, we investigated total tassel length (TTL) and tassel branch number (TBN) in 266 F2:3 families across six environments and in 301 recombinant inbred lines (RILs) across three environments, where all the plants were derived from a cross between 08-641 and Ye478. We compared the genetic architecture of the two traits across two generations through combined analysis. In total, 27 quantitative trait loci (QTLs) (15 in F2:3; 16 in RIL), two QTL × environment interactions (both in F2:3), 11 pairs of epistatic interactions (seven in F2:3; four in RIL) and four stable QTLs in both the F2:3 and RILs were detected. The RIL population had higher detection power than the F2:3 population. Nevertheless, QTL × environment interactions and epistatic interactions could be more easily detected in the F2:3 population than in the RILs. Overall, the QTL mapping results in the F2:3 and RILs were greatly influenced by genetic generations and environments. Finally, fine mapping for a novel and major QTL, qTTL-2-3 (bin 2.07), which accounted for over 8.49% of the phenotypic variation across different environments and generations, could be useful in marker-assisted breeding.


Assuntos
Cruzamentos Genéticos , Endogamia , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Recombinação Genética/genética , Zea mays/anatomia & histologia , Zea mays/genética , Meio Ambiente , Epistasia Genética , Fenótipo
19.
Mol Plant ; 11(3): 473-484, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29421339

RESUMO

Wild potato species have substantial phenotypic and physiological diversity. Here, we report a comprehensive assessment of wild and cultivated potato species based on genomic analyses of 201 accessions of Solanum section Petota. We sequenced the genomes of these 201 accessions and identified 6 487 006 high-quality single nucleotide polymorphisms (SNPs) from 167 accessions in clade 4 of Solanum section Petota, including 146 wild and 21 cultivated diploid potato accessions with a broad geographic distribution. Genome-wide genetic variation analysis showed that the diversity of wild potatoes is higher than that of cultivated potatoes, and much higher genetic diversity in the agronomically important disease resistance genes was observed in wild potatoes. Furthermore, by exploiting information about known quantitative trait loci (QTL), we identified 609 genes under selection, including those correlated with the loss of bitterness in tubers and those involved in tuberization, two major domesticated traits of potato. Phylogenetic analyses revealed a north-south division of all species in clade 4, not just those in the S. brevicaule complex, and further supported S. candolleanum as the progenitor of cultivated potato and the monophyletic origin of cultivated potato in southern Peru. In addition, we analyzed the genome of S. candolleanum and identified 529 genes lost in cultivated potato. Collectively, the molecular markers generated in this study provide a valuable resource for the identification of agronomically important genes useful for potato breeding.


Assuntos
Genômica/métodos , Melhoramento Vegetal , Solanum tuberosum/genética , Variação Genética/genética , Genoma de Planta/genética , Genótipo , Filogenia , Tubérculos/genética , Tubérculos/metabolismo , Locos de Características Quantitativas/genética
20.
FEBS J ; 284(18): 3079-3099, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28726249

RESUMO

The biosynthesis of starch is a complex process that depends on the regulatory mechanisms of different functional enzymes, and transcriptional regulation plays an important role in this process. Brittle 1, encoded by BT1, is a transporter of adenosine diphosphate-glucose, which plays an important role in the biosynthesis of starch in the endosperm of cereals. Here, we report that the promoter (pZmBT1) of the maize BT1 homolog, ZmBT1, contains an MBSI site (TAACTG), which is important for its activity. Moreover, high expression level of the gene for ZmMYB14 transcription factor was observed in the maize endosperm; its expression pattern was similar to those of the starch synthesis-related genes in maize seeds. ZmMYB14 is a typical 2R-MYB transcription factor localized in the nucleus and possessed transcriptional activation activity. ZmMYB14 could bind to the region of pZmBT1 from -280 to -151 bp and promote its activity through the TAACTG site. It was also observed to promote the activity of pZmSh2, pZmBt2, pZmGBSSI, pZmSSI, and pZmSBE1 in the maize endosperm in transient gene overexpression assays. Furthermore, ZmMYB14 was also shown to bind directly to the promoters of six starch-synthesizing genes, ZmGBSSI, ZmSSI, ZmSSIIa, ZmSBE1, ZmISA1, and ZmISA2 in yeast. These findings indicate that ZmMYB14 functions as a key regulator of ZmBT1 and is closely related to the biosynthesis of starch. Our results provide crucial information related to the regulation of starch biosynthesis in maize and would be helpful in devising strategies for modulating starch production in maize endosperm.


Assuntos
Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Amido/biossíntese , Fatores de Transcrição/genética , Zea mays/genética , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/metabolismo , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Ontologia Genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Isoamilase/genética , Isoamilase/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Anotação de Sequência Molecular , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica , Sintase do Amido/genética , Sintase do Amido/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...