Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 19(1): 44, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472539

RESUMO

Thanks to high performance above room temperature, antimonide laser diodes have shown great potential for broad application in the mid-infrared spectral region. However, the laser`s performance noticeably deteriorates due to the reduction of carrier confinement with increased emission wavelength. In this paper, a novel active region with higher carrier confinements both of electron and hole, by the usage of an indirect bandgap material of Al0.5GaAs0.04Sb as the quantum barrier, was put up to address the poor carrier confinement of GaSb-based type-I multi-quantum-well (MQW) diode lasers emission wavelength above 2.5 µm. The carrier confinement and the differential gain in the designed active region are enhanced as a result of the first proposed usage of an indirect-gap semiconductor as the quantum barrier with larger band offsets in conduction and valence bands, leading to high internal quantum efficiency and low threshold current density of our lasers. More importantly, the watt-level output optical power is obtained at a low injection current compared to the state of the art. Our work demonstrates a direct and cost-effective solution to address the poor carrier confinement of the GaSb-based MQW lasers, thereby achieving high-power mid-infrared lasers.

2.
Opt Express ; 31(21): 34011-34020, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859166

RESUMO

In this paper, we put up a robust design of a stable single-mode-operated GaSb-based laser diode emitting around 1950nm. This novel design structure with socketed ridge-waveguide enables a simple fabrication and batch production of mid-infrared laser diodes on account of the mere usage of standard photolithography. By introducing micron-level index perturbations distributed along the ridge waveguide, the threshold gains of different FP modes are modulated. Four geometrical parameters of the perturbations are systematically optimized by analyzing the reflection spectrum to get a robust single-mode characteristic. Based on the optimized geometrical parameters, 1-mm long uncoated lasers are carried out and exhibit a stable single longitudinal mode from 10 °C to 40 °C with a maximum output power of more than 10 mW. Thus, we prove the feasibility of the standard photolithography to manufacture the monolithic single-mode infrared laser source without regrowth process or nanoscale lithography.

3.
Nanoscale Res Lett ; 17(1): 116, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477446

RESUMO

GaSb-based single-transverse-mode narrow ridge waveguide (RW) lasers with high power and simultaneous good beam quality have broad application prospects in the mid-infrared wavelength region. Yet its design and formation have not been investigated systematically, while the beam characteristics that affect their suitability for specific applications remain rarely analyzed and optimized. The present work addresses these issues by theoretically establishing a waveguide parameter domain that generalizes the overall possible combinations of ridge widths and etch depths that support single-transverse-mode operation for GaSb-based RW lasers. These results are applied to develop two distinct and representative waveguide designs derived from two proposed major optimization routes of model gain expansion and index-guiding enhancement. The designs were evaluated experimentally based on prototype 1-mm cavity-length RW lasers in the 1950 nm wavelength range, which were fabricated with waveguides having perpendicular ridge and smooth side-walls realized through optimized dry etching conditions. The model gain expanded RW laser design with a relatively shallow-etched (i.e., 1.55 [Formula: see text]m) and wide ridge (i.e., 7 [Formula: see text]m) yielded the highest single-transverse-mode power to date of 258 mW with a narrow lateral divergence angle of 11.1[Formula: see text] full width at half maximum at 800 mA under room-temperature continuous-wave operation, which offers promising prospects in pumping and coupling applications. Meanwhile, the index-guiding enhanced RW laser design with a relatively deeply etched (i.e., 2.05 [Formula: see text]m) and narrow ridge (i.e., 4 [Formula: see text]m) provided a highly stable and nearly astigmatism-free fundamental mode emission with an excellent beam quality of M[Formula: see text] factor around 1.5 over the entire operating current range, which is preferable for seeding external cavity applications and complex optical systems.

4.
Materials (Basel) ; 15(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36234294

RESUMO

Pr-doped CeO2 with different doping levels was prepared from Ce(NO3)3∙6H2O and Pr(NO3)3∙6H2O by solvothermal method without any additional reagents, in which the mixed solution of ethylene glycol and distilled water was employed as a solvent. The influences of Pr-doping on phase composition, crystal structure and morphology were investigated, as well as Pr valence and oxygen vacancy defects. The Pr cations entered into the CeO2 crystal lattice with normal trivalence and formed a Pr-CeO2 solid solution based on the fluorite structure. The larger trivalent Pr was substituted for tetravalent Ce in the CeO2 crystal and compensated by oxygen vacancy defects, which caused the local lattice expansion of the crystal lattice. Moreover, the Pr-doped CeO2 solid solutions exhibited visible color variation from bright cream via brick red to dark brown with the increasing of Pr contents. The degradation of AO7 dye was also investigated using a domestic medical ultraviolet lamp; the removal efficiency of AO7 by 1% and 2% Pr-doped CeO2 approached 100%, much higher than 66.2% for undoped CeO2.

5.
Front Vet Sci ; 9: 678671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242832

RESUMO

Canine adenovirus type 1 (CAdV-1) is the etiologic agent of fox encephalitis. As with most viral agents, the best method of prevention is vaccination. In this study, the CAdV-1 strain F1301 strain was used to construct a new type 1 canine adenovirus inactivated vaccine candidate, and its safety and immunogenicity were evaluated in silver foxes. Next, animals were challenged and survival rates of animals vaccinated with either the commercially available or the current candidate vaccine were examined. The results confirmed that the inactivated CAdV-1 vaccine prepared in this study can effectively protect against challenge with virulent CAdV-1 in silver foxes, and the safety profile was improved relative to that of the commercial vaccine. This study confirmed that the fox CAdV-1 F1301 strain can be used as a platform for an inactivated CAdV-1 vaccine.

6.
Inorg Chem ; 59(7): 4764-4771, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32207301

RESUMO

Understanding the active species derived from metal-organic frameworks (MOFs) plays a vital role in the fabrication of highly efficient and stable oxygen evolution reaction (OER) electrocatalysts. Herein, a new alkaline-stable 3D nickel metal-organic framework (Ni-MOF), containing a 1D rod-packing chain structure fused with a tetranuclear nickel cluster [Ni4(µ3-OH)2], is used as a target material to explore its OER properties. The electrocatalytic activities of pure Ni-MOF and hybrid materials made from Ni-MOF with different acetylene black loaded electrodes, such as glassy carbon, fluorine-doped tin oxide, and nickel foam, have been evaluated. Further analysis unravels that the enhanced OER performance might be attributed to the synergistic interactions of two catalytic active species between in situ formed ß-Ni(OH)2 and a tetranuclear Ni4(µ3-OH)2 cluster in Ni-MOF. The findings will shed fresh light on the fabrication of MOF-derived catalysts for efficient electrochemical energy conversion.

7.
Sci Rep ; 6: 20111, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26830464

RESUMO

Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.


Assuntos
Bactérias/crescimento & desenvolvimento , Biocombustíveis , Reatores Biológicos/microbiologia , Membranas Artificiais , Metano/biossíntese , Esgotos/microbiologia , Anaerobiose , Bactérias/genética , Oxirredução
8.
PLoS One ; 10(10): e0139703, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26436551

RESUMO

Dynamic membrane (DM) formation in dynamic membrane bioreactors plays an important role in achieving efficient solid-liquid separation. In order to study the contribution of extracellular polymeric substances (EPS) to DM formation in anaerobic dynamic membrane bioreactor (AnDMBR) processes, EPS extraction from and re-addition to bulk sludge were carried out in short-term filtration tests. DM formation behaviors could be well simulated by cake filtration model, and sludge with EPS re-addition showed the highest resistance coefficient, followed by sludge after EPS extraction. The DM layers exhibited a higher resistance and a lower porosity for the sludge sample after EPS extraction and for the sludge with EPS re-addition. Particle size of sludge flocs decreased after EPS extraction, and changed little with EPS re-addition, which was confirmed by interaction energy analysis. Further investigations by confocal laser scanning microscopy (CLSM) analysis and batch tests suggested that the removal of in-situ EPS stimulated release of soluble EPS, and re-added EPS were present as soluble EPS rather than bound EPS, which thus improved the formation of DM. The present work revealed the role of EPS in anaerobic DM formation, and could facilitate the operation of AnDMBR processes.


Assuntos
Reatores Biológicos , Polímeros , Anaerobiose , Filtração , Microscopia Confocal , Esgotos
9.
PLoS One ; 9(4): e93710, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24695488

RESUMO

An anaerobic dynamic membrane digester (ADMD) was developed to digest waste sludge, and pyrosequencing was used to analyze the variations of the bacterial and archaeal communities during the start-up. Results showed that bacterial community richness decreased and then increased over time, while bacterial diversity remained almost the same during the start-up. Proteobacteria and Bacteroidetes were the major phyla. At the class level, Betaproteobacteria was the most abundant at the end of start-up, followed by Sphingobacteria. In the archaeal community, richness and diversity peaked at the end of the start-up stage. Principle component and cluster analyses demonstrated that archaeal consortia experienced a distinct shift and became stable after day 38. Methanomicrobiales and Methanosarcinales were the two predominant orders. Further investigations indicated that Methanolinea and Methanosaeta were responsible for methane production in the ADMD system. Hydrogenotrophic pathways might prevail over acetoclastic means for methanogenesis during the start-up, supported by specific methanogenic activity tests.


Assuntos
Reatores Biológicos/microbiologia , Methanomicrobiales/isolamento & purificação , Methanosarcinales/isolamento & purificação , Proteobactérias/isolamento & purificação , Esgotos/microbiologia , Metano/metabolismo
10.
Biotechnol Adv ; 31(8): 1187-99, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23466365

RESUMO

This paper is designed to critically review the recent developments of membrane bio-technologies for sludge reduction and treatment by covering process fundamentals, performances (sludge reduction efficiency, membrane fouling, pollutant removal, etc.) and key operational parameters. The future perspectives of the hybrid membrane processes for sludge reduction and treatment are also discussed. For sludge reduction using membrane bioreactors (MBRs), literature review shows that biological maintenance metabolism, predation on bacteria, and uncoupling metabolism through using oxic-settling-anaerobic (OSA) process are promising ways that can be employed in full-scale applications. Development of control methods for worm proliferation is in great need of, and a good sludge reduction and MBR performance can be expected if worm growth is properly controlled. For lysis-cryptic sludge reduction method, improvement of oxidant dispersion and increase of the interaction with sludge cells can enhance the lysis efficiency. Green uncoupler development might be another research direction for uncoupling metabolism in MBRs. Aerobic hybrid membrane system can perform well for sludge thickening and digestion in small- and medium-sized wastewater treatment plants (WWTPs), and pilot-scale/full-scale applications have been reported. Anaerobic membrane digestion (AMD) process is a very competitive technology for sludge stabilization and digestion. Use of biogas recirculation for fouling control can be a powerful way to decrease the energy requirements for AMD process. Future research efforts should be dedicated to membrane preparation for high biomass applications, process optimization, and pilot-scale/full-scale tracking research in order to push forward the real and wide applications of the hybrid membrane systems for sludge minimization and treatment.


Assuntos
Biotecnologia , Membranas Artificiais , Esgotos , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...