Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37761235

RESUMO

Mitral valve prolapse (MVP) is a prevalent cardiac disorder that impacts approximately 2% to 3% of the overall population. While most patients experience a benign clinical course, there is evidence suggesting that a subgroup of MVP patients face an increased risk of sudden cardiac death (SCD). Although a conclusive causal link between MVP and SCD remains to be firmly established, various factors have been associated with arrhythmic mitral valve prolapse (AMVP). This study aims to provide a comprehensive review encompassing the historical background, epidemiology, pathology, clinical manifestations, electrocardiogram (ECG) findings, and treatment of AMVP patients. A key focus is on utilizing multimodal imaging techniques to accurately diagnose AMVP and to highlight the role of mitral annular disjunction (MAD) in AMVP.

2.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675036

RESUMO

Anthocyanin is a natural antioxidant agent extracted from the fruits of Sambucus canadensis, which has been considered to have potential anti-aging effects. Cell senescence is the primary cause of aging and related diseases. Recently, research on the development of compounds for eliminating senescent cells or damaged organs have shown prospects. The compounds which promote the clearing of senescent cells are called "senolytics". Though anthocyanin is considered to have potential anti-aging effects owing to its anti-inflammatory and antioxidant activities, the mechanism of the elimination of senescent cells remains unclear. In this study, we prepared anthocyanins extracted from the fruits of Sambucus canadensis and evaluated their anti-aging effects in vivo and in vitro. We found that anthocyanin could significantly reduce cell senescence and aging of the lens by inhibiting the activity of the PI3K/AKT/mTOR signaling pathway, consequently promoting the apoptosis of senescent cells, increasing the autophagic and mitophagic flux, and enhancing the renewal of mitochondria and the cell to maintain cellular homeostasis, leading to attenuating aging. Therefore, our study provided a basis for anthocyanin to be used as new "senolytics" in anti-aging.


Assuntos
Antocianinas , Sambucus , Antocianinas/farmacologia , Antioxidantes/farmacologia , Fosfatidilinositol 3-Quinases , Senescência Celular , Estresse Oxidativo
3.
Int J Cardiovasc Imaging ; 39(4): 697-706, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36460877

RESUMO

The main objectives of the current study are to investigate valvular involvement in patients with cardiac Behçet's disease (BD) and find out the risk factors of valvular involvement in cardiac BD. We retrospectively assessed the clinical and echocardiographic data in the medical records of 121 patients with BD admitted to Beijing Anzhen Hospital from January 2015 to January 2022. We evaluated the valvular structure and function mainly by echocardiography. A total of 77 BD patients (77/121, 63.64%) had cardiac valvular involvement. Valvular lesions occurred more frequently in males (p = 0.022). Aortic regurgitation (AR) (62/77, 80.52%) was the most common finding and severe AR occupied 80.65% (50/62). The most common manifestations of BD patients with severe AR was aortic valve prolapse (25/50, 50%), followed by echo-free spaces within the aortic annulus (11/50, 22%), vegetation-like lesions (10/50, 20%), and aortic root aneurysm (10/50, 20%). The incidence of paravalvular leaks (PVL) in BD patients was 14.29% (7/49). The diameter of the sinus of Valsalva and proximal ascending aorta, and total cholesterol (TCHO) were the independent risk factors of moderate-severe aortic valvular regurgitation (p < 0.01). Left ventricular end-diastolic dimension (LVEDD), left ventricular ejection fraction (LVEF) and brain natriuretic peptide (BNP) were significantly associated with moderate-severe mitral valvular regurgitation (p < 0.01). The most common valvular abnormality in BD is AR. Echocardiography has great value in the comprehensive evaluation and accurate diagnosis of valvular involvement in BD patients.


Assuntos
Insuficiência da Valva Aórtica , Síndrome de Behçet , Insuficiência da Valva Mitral , Masculino , Humanos , Síndrome de Behçet/complicações , Síndrome de Behçet/diagnóstico por imagem , Estudos Retrospectivos , Volume Sistólico , Função Ventricular Esquerda , Valor Preditivo dos Testes , Ecocardiografia , Valvas Cardíacas , Insuficiência da Valva Aórtica/etiologia , Insuficiência da Valva Aórtica/complicações , Insuficiência da Valva Mitral/complicações
4.
Nat Mater ; 22(4): 450-458, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35739274

RESUMO

Two-dimensional (2D) materials with multiphase, multielement crystals such as transition metal chalcogenides (TMCs) (based on V, Cr, Mn, Fe, Cd, Pt and Pd) and transition metal phosphorous chalcogenides (TMPCs) offer a unique platform to explore novel physical phenomena. However, the synthesis of a single-phase/single-composition crystal of these 2D materials via chemical vapour deposition is still challenging. Here we unravel a competitive-chemical-reaction-based growth mechanism to manipulate the nucleation and growth rate. Based on the growth mechanism, 67 types of TMCs and TMPCs with a defined phase, controllable structure and tunable component can be realized. The ferromagnetism and superconductivity in FeXy can be tuned by the y value, such as superconductivity observed in FeX and ferromagnetism in FeS2 monolayers, demonstrating the high quality of as-grown 2D materials. This work paves the way for the multidisciplinary exploration of 2D TMPCs and TMCs with unique properties.

5.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555672

RESUMO

The metabolism and apoptosis of tumor cells are important factors that increase their sensitivity to chemotherapeutic drugs. p53 and cisplatin not only induce tumor cell apoptosis, but also regulate the tumor cell metabolism. The TP53-induced glycolysis and apoptosis regulator (TIGAR) can inhibit glycolysis and promote more glucose metabolism in the pentose phosphate pathway. We speculate that the regulation of the TIGAR by the combination therapy of p53 and cisplatin plays an important role in increasing the sensitivity of tumor cells to cisplatin. In this study, we found that the combined treatment of p53 and cisplatin was able to inhibit the mitochondrial function, promote mitochondrial pathway-induced apoptosis, and increase the sensitivity. Furthermore, the expression of the TIGAR was inhibited after a combined p53 and cisplatin treatment, the features of the TIGAR that regulate the pentose phosphate pathway were inhibited, the glucose flux shifted towards glycolysis, and the localization of the complex of the TIGAR and Hexokinase 2 (HK2) on the mitochondria was also reduced. Therefore, the combined treatment of p53 and cisplatin may modulate a glycolytic flux through the TIGAR, altering the cellular metabolic patterns while increasing apoptosis. Taken together, our findings reveal that the TIGAR may serve as a potential therapeutic target to increase the sensitivity of lung cancer A549 cells to cisplatin.


Assuntos
Proteínas Reguladoras de Apoptose , Cisplatino , Neoplasias Pulmonares , Monoéster Fosfórico Hidrolases , Humanos , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Glicólise , Neoplasias Pulmonares/tratamento farmacológico , Monoéster Fosfórico Hidrolases/metabolismo , Proteína Supressora de Tumor p53/metabolismo
6.
Biomimetics (Basel) ; 7(4)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36546940

RESUMO

Periodontitis is an inflammatory disease induced by plaque microorganisms. In the clinic, antibiotic assistant periodontal mechanical therapy is the most effective therapy for the treatment of periodontitis. However, the drug resistance of the antibiotics and the repeated coming and diminishing of the disorder of oxidation-reduction balance in the inflammatory tissue could not meet the high requirements for periodontic health control in long periods. Deuterohemin-ala-his-thr-val-glu-lys (DhHP-6) is a biomimetic oxidase-mimicking enzyme that simulates the reactive oxygen radical scavenger function of heme by synthesizing the new molecular material following the key structure and amino acid sequence of heme. In this article, we report the antioxidant and anti-inflammatory properties of DhHP-6 by building a inflammatory model for human gingival fibroblasts (HGFs) stimulated by lipolysaccharide (LPS) and its effects on periodontitis in Wistar rats. DhHP-6 reduced the oxidative stress of HGFs by increasing the amount of the reductase species of glutathione (GSH) and catalase (CAT) while decreasing the amount of oxidase species of malonaldehyde (MDA) and reactive oxygen species (ROS). DhHP-6 had a dose-dependent protective effect on alveolar bone absorption in rats with periodontitis, enhanced antioxidant capacity, and reduced inflammation. As determined by Micro-CT scanning, DhHP-6 reduced alveolar bone loss and improved the bone structure of the left maxillary first molar of rats. There were no obvious morphological and histological differences in the rat organs with or without DhHP-6 treatment. These results suggest that DhHP-6 can be used to treat periodontitis by increasing the expression levels of antioxidant enzymes and antioxidants in systemic and local tissues, thereby reducing levels of oxidation products and cyto-inflammatory factors. The synergistic antioxidant and anti-inflammatory effects of DhHP-6 suggest that there are promising applications of this biomimetic enzyme molecular material for the next generation of agents for periodontitis therapy.

7.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233059

RESUMO

Skeletal muscles require muscle satellite cell (MuSC) differentiation to facilitate the replenishment and repair of muscle fibers. A key step in this process is called myogenic differentiation. The differentiation ability of MuSCs decreases with age and can result in sarcopenia. Although mitochondria have been reported to be involved in myogenic differentiation by promoting a bioenergetic remodeling, little is known about the interplay of mitochondrial proteostasis and myogenic differentiation. High-temperature-requirement protein A2 (HtrA2/Omi) is a protease that regulates proteostasis in the mitochondrial intermembrane space (IMS). Mice deficient in HtrA2 protease activity show a distinct phenotype of sarcopenia. To investigate the role of IMS proteostasis during myogenic differentiation, we treated C2C12 myoblasts with UCF101, a specific inhibitor of HtrA2 during differentiation process. A key step in this process is called myogenic differentiation. The differentiation ability of MuSCs decreases with age and can result in sarcopenia. Further, CHOP, p-eIF2α, and other mitochondrial unfolded protein response (UPRmt)-related proteins are upregulated. Therefore, we suggest that imbalance of mitochondrial IMS proteostasis acts via a retrograde signaling pathway to inhibit myogenic differentiation via the UPRmt pathway. These novel mechanistic insights may have implications for the development of new strategies for the treatment of sarcopenia.


Assuntos
Serina Peptidase 2 de Requerimento de Alta Temperatura A , Proteínas Mitocondriais , Sarcopenia , Animais , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Camundongos , Proteínas Mitocondriais/metabolismo , Peptídeo Hidrolases
8.
Animals (Basel) ; 12(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36230279

RESUMO

Specific pathogen-free (SPF) grade laboratory animals are kept in specific cages for life. The limited space could affect the characterization of colonization and dynamic changes related to gut microorganisms, and affect adipokines, even further affecting the fat synthesis and muscle quality of animals. The objective of this study was to analyze the stocking density on the dynamic distribution of gut microbiota, fat synthesis and muscle quality of SPF grade Kunming mice. Three housing densities were accomplished by raising different mice per cage with the same floor size. Kunming mice were reared at low stocking density (LSD, three mice a group), medium stocking density (MSD, 5 mice a group), and high stocking density (HSD, 10 mice a group) for 12 weeks. The results demonstrated that the stocking density affected intestinal microbial flora composition. We found that compared with the MSD group, the abundance of Lactobacillus in the LSD group and the HSD group decreased, but the abundance of unclassified_Porphyromonadaceae increased. Moreover, fat synthesis and muscle quality were linked to the intestinal microbial flora and stocking density. Compared with the LSD group and the HSD group, the MSD group had a more balanced gut flora, higher fat synthesis and higher muscle quality. Overall, this study demonstrated that stocking density could affect gut microbiota composition, and reasonable stocking density could improve fat synthesis and muscle quality. Our study will provide theoretical support for the suitable stocking density of laboratory animals.

9.
Biomacromolecules ; 23(9): 3752-3765, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36001455

RESUMO

To enhance the efficacy of tumor therapy, the collection of functional components into a targeting system shows advantages over most homogeneous materials in inducing apoptosis of cancer cells. The security and targeting of therapeutic agents also require the effect combination of additional components. However, the construction of multifunctional composites in a simple system with intelligent cooperative responsiveness remains a challenge. Herein, a reduced polyanionic cluster (rP2W18) bearing the absorption at the near infrared (NIR) II region is used as a core carrier to bind the positively charged doxorubicin hydrochloride (DOX) through ionic interaction. To reduce the physiological toxicity, hyaluronic acid grafting ß-cyclodextrin side chains is used to cover the ionic complex through host-guest inclusion to DOX. When the nanocomposite is activated by local laser exposure, the final three-component therapeutic agent is demonstrated to present targeted photothermal conversion capability and chemodynamic activity together with chemotherapy. With the controlled release of DOX under the stimulation of mild acidity in the tumor region and photothermal effect, the exposed rP2W18 is aroused by hydrogen peroxide overexpressed in a tumor microenvironment to produce toxic reactive oxygen species, 1O2. This work presents an opportunity for the development of a nanocomposite in NIR-II photothermal/chemo-therapy and chemodynamic synergistic therapy.


Assuntos
Nanopartículas , Neoplasias , Ânions , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Humanos , Ácido Hialurônico/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fototerapia , Polieletrólitos , Microambiente Tumoral
10.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805987

RESUMO

Ultraviolet (UV) radiation is a major cause of photoaging that can induce DNA damage, oxidative stress, and cellular aging. Metformin (MF) can repair DNA damage, scavenge reactive oxygen species (ROS), and protect cells. However, the mechanism by which MF inhibits cell senescence in chronic skin damage induced by UVA is unclear. In this study, human foreskin fibroblasts (HFFs) treated with UVA were used as an in vitro model and UVA-induced skin photoaging in Kunming mice was used as an in vivo model to investigate the potential skin protective mechanism of MF. The results revealed that MF treatment attenuated UVA-induced cell viability, skin aging, and activation of the PI3K/AKT/mTOR signaling pathway. Furthermore, MF treatment alleviated the mitochondrial oxidative stress and decreased mitophagy. Knockdown of Parkin by siRNA increased the clearance of MF in senescent cells. The treatment of Kunming mice with MF at a dose of 10 mg/kg/day significantly reduced UVA-induced skin roughness, epidermal thinning, collagen degradation, and skin aging. In conclusion, our experimental results suggest that MF exerts anti-photoaging effects by inhibiting mitophagy and the PI3K/AKT/mTOR signaling pathway. Therefore, our study improves the current understanding of the protective mechanism of MF against photoaging.


Assuntos
Metformina , Envelhecimento da Pele , Dermatopatias , Animais , Fibroblastos/metabolismo , Metformina/metabolismo , Metformina/farmacologia , Camundongos , Mitofagia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pele , Dermatopatias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Raios Ultravioleta/efeitos adversos
12.
Adv Healthc Mater ; 11(14): e2102352, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35524986

RESUMO

In the search for materials with enhanced near-infrared (NIR) photothermal properties and capability of providing environment-sensitive therapy, a method that combines isolated components into one nanocomposite is developed. The technique simultaneously involves redox, charge-transfer formation, and ionic complexation. During the polyoxophosphomolybdate (PMo) cluster mixing with biosafe chromogen 3,3',5,5'-tetramethylbenzidine (TMB), the reduced state (rPMo) and the oxidized TMB in the state of charge-transfer complex (cTMB) emerge spontaneously. The two reduced and oxidized components with charges form a stable ionic complex that resists physiology, saline, broad pH, and elevated temperature. Both the rPMo and cTMB contribute to the total sustainable photothermal conversion efficiency of 48.4% in the NIR-II region. The ionic complex exhibits biocompatibility in in vitro cell viability evaluation and is demonstrated to enter tumor cells with sustained photothermal property and complexation stability. Due to the local acidity that triggers further interaction among rPMo clusters, a distinct accumulation of the ionic complex at the tumor position is observed after caudal vein injection. Moreover, a remarkable local NIR-II photothermal image appears. The diminishment of tumor in mice with maintained body weight demonstrates the comprehensive effect of this NIR-II photothermal therapeutic material.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Hipertermia Induzida/métodos , Camundongos , Nanopartículas/química , Neoplasias/patologia , Fototerapia/métodos , Terapia Fototérmica
13.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328718

RESUMO

Chemotherapeutic drug-induced p53-dependent crosstalk among tumor cells affects the sensitivity of tumor cells to chemotherapeutic drugs, contributing to chemoresistance. Therefore, pharmacological targeting of p53 may contribute to overcoming drug resistance. The localization of p53 is closely related to its function. Thus, we assessed the effect of p62 on the coordination of p53 mitochondrial localization under chemotherapeutic drug treatment in ovarian cancer cells. We found that the combined use of the proteasome inhibitor epoxomicin and cisplatin led to the accumulation of p53 and sequestosome1(p62) in the mitochondria, downregulated mitochondrial DNA (mtDNA) transcription, inhibited mitochondrial functions, and ultimately promoted apoptosis by enhancing cisplatin sensitivity in ovarian cancer cells. Moreover, the ubiquitin-associated (UBA) domain of p62 was involved in regulating the mitochondrial localization of p53. Our findings suggest that the interaction between p62 and p53 may be a mechanism that determines the fate of tumor cells. In conclusion, p62 coordinated the mitochondrial localization of p53 through its UBA domain, inhibited mtDNA transcription, downregulated mitochondrial function, and promoted ovarian cancer cell death. Our study demonstrates the important role of p53 localization in tumor cell survival and apoptosis, and provides new insights into understanding the anti-tumor mechanism of targeting the ubiquitin-proteasome system in tumor cells.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Epitelial do Ovário/tratamento farmacológico , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , DNA Mitocondrial/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo
14.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163244

RESUMO

Interactions between the mitochondrial inner and outer membranes and between mitochondria and other organelles closely correlates with the sensitivity of ovarian cancer to cisplatin and other chemotherapeutic drugs. However, the underlying mechanism remains unclear. Recently, the mitochondrial protease OMA1, which regulates internal and external signals in mitochondria by cleaving mitochondrial proteins, was shown to be related to tumor progression. Therefore, we evaluated the effect of OMA1 on the response to chemotherapeutics in ovarian cancer cells and the mouse subcutaneous tumor model. We found that OMA1 activation increased ovarian cancer sensitivity to cisplatin in vivo and in vitro. Mechanistically, in ovarian cancer, OMA1 cleaved optic atrophy 1 (OPA1), leading to mitochondrial inner membrane cristae remodeling. Simultaneously, OMA1 induced DELE1 cleavage and its cytoplasmic interaction with EIF2AK1. We also demonstrated that EIF2AK1 cooperated with the ER stress sensor EIF2AK3 to amplify the EIF2S1/ATF4 signal, resulting in the rupture of the mitochondrial outer membrane. Knockdown of OMA1 attenuated these activities and reversed apoptosis. Additionally, we found that OMA1 protease activity was regulated by the prohibitin 2 (PHB2)/stomatin-like protein 2 (STOML2) complex. Collectively, OMA1 coordinates the mitochondrial inner and outer membranes to induce ovarian cancer cell death. Thus, activating OMA1 may be a novel treatment strategy for ovarian cancer.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias Ovarianas/metabolismo , Proibitinas/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Humanos , Camundongos , Membranas Mitocondriais/metabolismo
15.
Adv Mater ; 34(11): e2100537, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34951727

RESUMO

Amorphization is an efficient strategy to activate intrinsically inert catalysts. However, the low crystallinity of amorphous catalysts often causes high solubility and poor electrochemical stability in aqueous solution. Here, a different mechanism is developed to simultaneously stabilize and activate the water-soluble amorphous MoSx Oy via a charge-balancing strategy, which is induced by different electronegativity between the co-dopants Rh (2.28) and Sn (1.96). The electron-rich Sn prefers to stabilize the unstable apical O sites in MoSx Oy through charge transfer, which can prevent the H from attacking. Meanwhile, the Rh, as the charge regulator, shifts the main active sites on the basal plane from inert Sn to active apical Rh sites. As a result, the amorphous RhSn-MoSx Oy exhibits drastic enhancement in electrochemical stability (η10 increases only by 12 mV) after 1000 cycles and a distinct activity (η10 : 26 mV and Tafel: 30.8 mV dec-1 ) for the hydrogen evolution reaction in acidic solution. This work paves a route for turning impracticably water-soluble catalysts into treasure and inspires new ideas to design high-performance amorphous electrocatalysts.

16.
J Biochem Mol Toxicol ; 35(10): e22887, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34392578

RESUMO

Diabetic cardiomyopathy (DCM), a diabetes complication, accounts for diabetes-associated morbidity, mortality, and heart failure. Biflavonoids have been demonstrated to possess extensive pharmacological properties, such as antidiabetic and antioxidant activities. Our study aimed to explore the effects of sciadopitysin, a type of biflavonoid, on DCM and the mechanism involved. An experimental cell model was established in AC16 cardiomyocytes by exposure to high glucose (HG). Cell injury was estimated by detecting cell viability and lactate dehydrogenase (LDH) release. Oxidative stress was determined by measuring malondialdehyde (MDA) level and activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT). Apoptosis was assessed by flow cytometry analysis, caspase-3/7 activity assay, and Western blot analysis of cytochrome C (Cyt C) expression. Alternation of the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (PKB)/glycogen synthase kinase-3ß (GSK-3ß) pathway was detected by Western blot. Results showed that HG exposure reduced viability and increased LDH release in AC16 cells, which was abolished by sciadopitysin treatment. Sciadopitysin inhibited HG-induced oxidative stress, as evidenced by the reduced MDA content, and the increased activities of SOD, CAT, and GSH-Px. Sciadopitysin suppressed HG-induced apoptosis, an increase of caspase-3/7 activity, and Cyt C expression in AC16 cells. Mechanistically, sciadopitysin activated the PI3K/PKB/GSK-3ß pathway under HG stimulation in AC16 cells. Inhibition of PI3K/PKB/GSK-3ß pathway by LY294002 blocked the effects of sciadopitysin on HG-induced injury, oxidative stress, and apoptosis in AC16 cells. Summarily, sciadopitysin alleviated HG-caused oxidative stress and apoptosis in cardiomyocytes by activating the PI3K/PKB/GSK-3ß pathway.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Biflavonoides/farmacologia , Glucose/efeitos adversos , Glicogênio Sintase Quinase 3 beta/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromonas/farmacologia , Cardiomiopatias Diabéticas/metabolismo , Glucose/metabolismo , Humanos , Morfolinas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia
17.
J Colloid Interface Sci ; 604: 429-440, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34271494

RESUMO

Generally, preparing high-efficiency heterojunction photocatalysts via a facile room-temperature route is attractive from the perspective of energy and labor saving. Herein, by using dried and glacial acetic acid (HAc)-adsorbed bismuth nitrate, instead of Bi(NO3)3·5H2O, as a Bi source, a ß-Bi2O3/Bi5O7I heterojunction with well dispersed flowery hierarchical architecture was synthesized, which endows it with high surface area, open channels and good light harvest. More importantly, the change of the precursor achieved a successful transformation for both of phase and heterojunction type, i.e. from type-Ⅰ BiOI/[Bi6O5(OH)3](NO3)5·3H2O (labeled as BiOI/BBN) to Z-scheme ß-Bi2O3/Bi5O7I heterojunction. Since both ß-Bi2O3 and Bi5O7I are visible light responsive, ß-Bi2O3/Bi5O7I exhibited improved visible-light photocatalytic activity for the degradation of tetracycline (TC) and malachite green (MG) with apparent reactant rate (kapp) values about 10 and 11 times higher than those of BiOI/BBN. Besides, the presence of more oxygen vacancies also contributed to the enhancement in photocatalytic performance.


Assuntos
Luz , Tetraciclina , Antibacterianos , Catálise
18.
Environ Toxicol ; 36(11): 2236-2244, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34323000

RESUMO

Previous studies have identified the dysregulation of various circRNAs in many types of human cancers including thyroid cancer (TC). Circular RNA ZFR (circZFR) serves as an oncogenic circRNA in TC. However, the detailed molecular mechanism of circZFR in TC progression remains to be further explored. CircZFR and miR-16 expressions in TC cells were analyzed through qRT-PCR. Cell viability, invasion, and apoptosis were detected using CCK-8, transwell invasion assay, and flow cytometry analysis, respectively. The relationship between circZFR and miR-16 was explored using luciferase reporter assay, RNA pull-down assay, and qRT-PCR. The relationship between miR-16 and mitogen-activated protein kinase 1 (MAPK1) was explored using luciferase reporter assay and western blot analysis. Results showed that circZFR was upregulated and miR-16 was downregulated in TC cells. CircZFR knockdown inhibited the viability and invasion and induced apoptosis in TC cells. CircZFR inhibited miR-16 expression by sponging miR-16 and miR-16 repressed MAPK1 expression by targeting MAPK1. Moreover, circZFR positively regulated MAPK1 expression in TC cells by serving as a ceRNA of miR-16. Mechanistically, circZFR knockdown-induced inhibition of cell viability and invasion and promotion of apoptosis were overturned after miR-16 downregulation and promotion of MAPK1. Collectively, circZFR knockdown retarded TC progression by sponging miR-16 and modulating MAPK1 expression.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Linhagem Celular Tumoral , Proliferação de Células , Humanos , MicroRNAs/genética , Proteína Quinase 1 Ativada por Mitógeno , RNA Circular , Neoplasias da Glândula Tireoide/genética
20.
Nat Commun ; 12(1): 1398, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658519

RESUMO

We previously identified a causal link between a rare patient mutation in DISC1 (disrupted-in-schizophrenia 1) and synaptic deficits in cortical neurons differentiated from isogenic patient-derived induced pluripotent stem cells (iPSCs). Here we find that transcripts related to phosphodiesterase 4 (PDE4) signaling are significantly elevated in human cortical neurons differentiated from iPSCs with the DISC1 mutation and that inhibition of PDE4 or activation of the cAMP signaling pathway functionally rescues synaptic deficits. We further generated a knock-in mouse line harboring the same patient mutation in the Disc1 gene. Heterozygous Disc1 mutant mice exhibit elevated levels of PDE4s and synaptic abnormalities in the brain, and social and cognitive behavioral deficits. Pharmacological inhibition of the PDE4 signaling pathway rescues these synaptic, social and cognitive behavioral abnormalities. Our study shows that patient-derived isogenic iPSC and humanized mouse disease models are integral and complementary for translational studies with a better understanding of underlying molecular mechanisms.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Inibidores da Fosfodiesterase 4/farmacologia , Esquizofrenia/genética , Animais , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/fisiologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos Mutantes , Mutação , Neurônios/efeitos dos fármacos , Rolipram/farmacologia , Esquizofrenia/patologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...