Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2400149, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881177

RESUMO

Recently, supercapacitors (SCs) are extensively explored as effective energy storage devices. Specifically, asymmetric SCs are being developed to enhance energy density using suitable materials with favorable nanostructures. This study describes the construction of a bismuth copper selenite (BCS-200) working electrode with an ultrathin nanosheet (UTNS) architecture. This morphology is achieved using a low-cost electrodeposition (ED) method, followed by annealing. The impact of ED time on the development of morphology is studied by synthesizing comparative electrodes simultaneously. The optimized BCS-200 electrode prepared with a deposition time of 200 s shows higher specific capacity/capacitance (Cs/Csc) values of 330.9 mAh g-1/2206.6 F g-1 than the other synthesized electrodes (BCS-100, BCS-150, BCS-250, and BCS-300). Besides, a vapor-grown carbon fiber (VGCF)-added Fe2O3 composite coated on nickel foam (NF) is developed as a negative electrode. The VGCFs@Fe2O3/NF electrode exhibits the (Cs/Csc) values of 183.5 mAh g-1/734.4 F g-1, which is associated with ultra-high cycling stability. In addition, the fabricated BCS-200 and VGCFs@Fe2O3/NF electrodes are combined to construct a wearable semi-solid-state asymmetric SC (SSASC) with an energy density (Ed) of 20.5 Wh kg-1 and a cycling stability of 91.7% over 40000 charge/discharge cycles. Furthermore, the real-time applicability of the SSASC is verified by powering it in practical applications.

2.
Dalton Trans ; 53(24): 10178-10188, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38819237

RESUMO

In this report, we successfully synthesized a novel trivalent europium (Eu3+)-activated Ca4Nb2O9 phosphor emitting reddish-orange light via its 5D0 → 7F1 and 5D0 → 7F2 transitions. In the Ca4Nb2O9 host, Eu3+ ions exhibited optimal doping at a concentration of 15 mol%, with the concentration-quenching mechanism predominantly driven by electric dipole-dipole interactions. In addition, the Ca4Nb2O9:Eu3+ phosphor exhibited excellent thermal stability with a photoluminescence (PL) intensity of 71.6% at a working temperature of 423 K. Interestingly, the internal PL quantum yield (PLQY) of the optimal sample was obtained to be 87.43%, and the external PLQY was determined to be 47.81%. The fabricated white light-emitting diode that employed this optimized phosphor alongside commercial phosphors, via a novel silica epoxy gel (parts A and B)-based method, exhibited good color rendering index (color rendering index = 80.65), excellent warm-correlated color temperature (correlated color temperature = 3753 K), and Commission International de l'Eclairage chromaticity coordinate (0.3922, 0.3845). Moreover, the optimal phosphor was introduced into the polyvinyl alcohol (PVA) polymer film, creating a translucent film. These films were then fabricated on glass, plastic, and card, which showed a satisfying emission under ultraviolet radiation. Consequently, the proposed Eu3+-activated Ca4Nb2O9 phosphors can be used as light sources and the Ca4Nb2O9:Eu3+-PVA film is proposed for anti-counterfeiting applications.

3.
Small ; : e2311176, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528437

RESUMO

Global demands for cost-effective, durable, highly active, and bifunctional catalysts for metal-air batteries are tremendously increasing in scientific research fields. In this work, a strategy for the rational fabrication of carbon layer-encapsulated cobalt tin sulfide nanopores (CoSnOH/S@C NPs) material as a bifunctional electrocatalyst for rechargeable zinc (Zn)-air batteries by a cost-effective and facile two-step hydrothermal method is reported. Moreover, the effect of metal elements on the morphology of CoSnOH nanodisks material via the hydrothermal method is investigated. Owing to its excellent nanostructure, exclusive porous network, and high specific surface area, the optimized CoSnOH/S@C NPs material reveals superior catalytic properties. The as-prepared CoSnOH/S@C NPs electrocatalyst reveals better properties of oxygen reduction reaction (half-wave potential of -0.88 V vs reversible hydrogen electrode) and oxygen evolution reaction (overpotential of 137 mV at 10 mA cm-2) when compared with commercial Pt/C and IrO2 catalyst materials. Most significantly, the CoSnO/S@C NPs-based Zn-air battery exhibits more excellent cycling stability than the Pt/C+IrO2 catalyst-based one. Consequently, the proposed material provides a new route for fabricating more active and stable multifunctional catalyst materials for energy conversion and storage systems.

4.
Nanomicro Lett ; 16(1): 112, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334816

RESUMO

The undesirable dendrite growth induced by non-planar zinc (Zn) deposition and low Coulombic efficiency resulting from severe side reactions have been long-standing challenges for metallic Zn anodes and substantially impede the practical application of rechargeable aqueous Zn metal batteries (ZMBs). Herein, we present a strategy for achieving a high-rate and long-cycle-life Zn metal anode by patterning Zn foil surfaces and endowing a Zn-Indium (Zn-In) interface in the microchannels. The accumulation of electrons in the microchannel and the zincophilicity of the Zn-In interface promote preferential heteroepitaxial Zn deposition in the microchannel region and enhance the tolerance of the electrode at high current densities. Meanwhile, electron aggregation accelerates the dissolution of non-(002) plane Zn atoms on the array surface, thereby directing the subsequent homoepitaxial Zn deposition on the array surface. Consequently, the planar dendrite-free Zn deposition and long-term cycling stability are achieved (5,050 h at 10.0 mA cm-2 and 27,000 cycles at 20.0 mA cm-2). Furthermore, a Zn/I2 full cell assembled by pairing with such an anode can maintain good stability for 3,500 cycles at 5.0 C, demonstrating the application potential of the as-prepared ZnIn anode for high-performance aqueous ZMBs.

6.
Dalton Trans ; 53(2): 647-655, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38073593

RESUMO

White light-emitting diode (WLEDs), acting as a new generation of solid-state lighting, play a critical role in energy conservation. Red-emitting phosphors with high efficiency could effectively improve the quality of WLED devices. In this report, Eu3+-doped Ca2ScTaO6 luminescent materials have been successfully synthesized by a high-temperature solid-state method. Its crystal structure was confirmed to be a monoclinic lead-free double-perovskite material system with the space group P21/n by the X-ray diffraction patterns. The strongest emission peak was about 614 nm distributed to the 5D0 → 7F2 electric-dipole transition. Additionally, the optimal doping concentration was found to be 40 mol%, and the concentration quenching mechanism is assigned to d-d interactions. The Ca2ScTaO6:Eu3+ phosphors exhibited an ultrahigh internal quantum yield (about 100%) with good thermal stability (81.5% at 423 K compared with the emission intensity at 303 K). Furthermore, a WLED with a suitable correlated color temperature (4201 K) and a color rendering index (87.62) was fabricated. The phosphor-based polydimethylsiloxane light-emitting flexible film exhibited good luminescence, which is suitable to be utilized in flexible displays. The obtained results suggest that the high-efficiency red-emitting Ca2ScTaO6:Eu3+ phosphors are promising commercial candidates for use in near-ultraviolet-excited WLEDs.

7.
Small ; : e2308428, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072813

RESUMO

Nanogenerators for acoustic energy harvesting are still in the early stage of development, and many challenges such as the optimization of device structure and the design of efficient and sensitive materials need to be addressed. To solve the above-mentioned problems, herein, advancement in synthesized multiferroic material for hybridizing the nanogenerator and efficient harvesting of various energies such as acoustic, mechanical, and vibrational energies is reported. Initially, bismuth ferrate (BiFeO3 , BFO)-based composite films are prepared with high ferroelectric and dielectric coefficients. The hybrid nanogenerator (HNG) based on a 3D-printed structure has the highest electrical output which is further improved depending on the BFO loading concentration in the composite film. The 0.5 wt% BFO-loaded PVDF-based HNG offers the enhanced open circuit voltage, short circuit current, and charge density values of ≈30 V, ≈1 µA, and ≈10 µC/m2 , respectively. The optimized HNG is employed to harvest mechanical energy from everyday human life. Furthermore, the HNG layers are used in the fabrication of a multi-energy harvester/sensor (MEH/S) which can harvest/sense various vibrational and acoustic energies under different acoustic frequencies and amplitudes, respectively. The harvested energy from the MEH/S is tested to power portable electronics.

8.
Small Methods ; : e2301398, 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38143278

RESUMO

Improving the layered-structure stability and suppressing vanadium (V) dissolution during repeated Zn2+ insertion/extraction processes are key to promoting the electrochemical stability of V-based cathodes for aqueous zinc (Zn)-ion batteries (AZIBs). In this study, barium vanadate (Ba2 V2 O7 , BVO) nanostructures (NSs) are synthesized using a facile hydrothermal method. The formation process of the BVO NSs is controlled by adjusting the concentration of hydrogen peroxide (H2 O2 ), and these NSs are employed as potential cathode materials for AZIBs. As the H2 O2 content increases, the corresponding electrochemical properties demonstrate a discernible parabolic trend, with an initial increase, followed by a subsequent decrease. Benefiting from the effect of H2 O2 concentration, the optimized BVO electrode with 20 mL H2 O2 delivers a specific capacity of 180.15 mA h g-1 at 1 A g-1 with good rate capability and a long-term cyclability of 158.34 mA h g-1 at 3 A g-1 over 2000 cycles. Thus, this study provides a method for designing cathode materials with robust structures to boost the electrochemical performance of AZIBs.

9.
Dalton Trans ; 52(43): 15798-15806, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37812449

RESUMO

Color tunable phosphors of Mn4+ and Tb3+ co-doped double-perovskite SrGdLiTeO6 (SGLT) were synthesized in this work. The crystal parameters and photoluminescence performances were investigated in detail. By taking advantage of the different thermal quenching strengths between Mn4+ and Tb3+ ions, the emission color of SGLT:0.7%Mn4+/1%Tb3+ changed from red to green, which could be used for high-temperature temperature warning indication. Moreover, according to the luminescence intensity ratio (LIR) technique, wide temperature-range optical thermometry was developed and further, the maximum relative sensitivity (SR1) value of the SGLT:0.7%Mn4+/5%Tb3+ phosphor was determined to be 1.49% K-1 at 560 K. On the other hand, the sensing properties were also analyzed based on the temperature-dependent lifetime method. The most interesting thing is that the maximum SR2 value reached 1.88% K-1 at 573 K. This work proved that the Mn4+ and Tb3+ co-doped double-perovskite SrGdLiTeO6 could be potentially used in temperature warning indication and high sensitivity luminescence thermometry.

10.
Dalton Trans ; 52(31): 10751-10759, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37470696

RESUMO

Herein, single monoclinic phase Mn4+-doped Sr2InTaO6 (SITO) phosphors were reported in terms of both luminescence behaviors and potential applications. The optimal Mn4+-doped SITO (0.3 mol%) exhibited a good color purity of 92.9% in a deep-red region with a chromaticity coordinate of (0.707, 0.293). In addition, the local structure of Mn4+ in the SITO matrix was determined. The crystal-field strength was calculated to be approximately 1781.7 cm-1 whereas the nephelauxetic ratio was determined to be 1.04. Furthermore, the flexible SITO:Mn4+-YAG:Ce3+ security film was fabricated for use in anti-counterfeiting applications, which could emit different colors under various lighting sources. The SITO:Mn4+ phosphors exhibited a high sensing sensitivity based on the luminescence lifetime. Consequently, the SITO:Mn4+ phosphors can be employed in bifunctional platforms of luminescence lifetime thermometry and anti-counterfeiting applications.

11.
Nanoscale ; 15(31): 13049-13061, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37493392

RESUMO

Highly-efficient electroactive materials with distinctive electrochemical features, along with suitable strategies to prepare hetero-nanoarchitectures incorporating two or more transition metal selenides, are currently required to increase charge storage ability. Herein, a one-pot solvothermal approach is used to develop iron-nickel selenide spring-lawn-like architectures (FeNiSe SLAs) on nickel (Ni) foam. The porous Ni foam scaffold not only enables the uniform growth of FeNiSe SLAs but also serves as an Ni source. The effect of reaction time on their morphological and electrochemical properties is investigated. The FeNiSe-15 h electrode shows high areal capacity (493.2 µA h cm-2) and superior cycling constancy. The as-assembled aqueous hybrid cell (AHC) demonstrates high areal capacity and a decent rate capability of 59.4% (50 mA cm-2). The AHC exhibits good energy and power densities, along with excellent cycling stability. Furthermore, to confirm its practicability, the AHC is employed to drive portable electronic appliances by charging it with wind energy. The electrocatalytic activity of FeNiSe-based materials to complete the oxygen evolution reaction (OER) is explored. Among them, the FeNiSe-15 h catalyst shows good OER performance at a current density of 50 mA cm-2. This general synthesis approach may initiate a strategy of advanced metal selenide-based materials for multifunctional applications.

12.
Small ; 19(27): e2300535, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37009996

RESUMO

Triboelectric nanogenerators are an emerging energy-scavenging technology that can harvest kinetic energy from various mechanical moments into electricity. The energy generated while humans walk is the most commonly available biomechanical energy. Herein, a multistage consecutively-connected hybrid nanogenerator (HNG) is fabricated and combined with a flooring system (MCHCFS) to efficiently harvest mechanical energy while humans walk. Initially, the electrical output performance of the HNG is optimized by fabricating a prototype device using various strontium-doped barium titanate (Ba1- x Srx TiO3 , BST) microparticles loaded polydimethylsiloxane (PDMS) composite films. The BST/PDMS composite film acts as a negative triboelectric layer that operates against aluminum. Single HNG operated in contact-separation mode could generate an electrical output of ≈280 V, ≈8.5 µA, and ≈90 µC m-2 . The stability and robustness of the fabricated HNG are confirmed and eight similar HNGs are assembled in a 3D-printed MCHCFS. The MCHCFS is specifically designed to distribute applied force on the single HNG to four nearby HNGs. The MCHCFS can be implemented in real-life floors with an enlarged surface area to harvest energy generated while humans walk into direct current electrical output. The MCHCFS is demonstrated as a touch sensor that can be utilized in sustainable path lighting to save enormous electricity waste.

13.
ACS Appl Mater Interfaces ; 15(13): 16768-16777, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36973637

RESUMO

Recent advancements in wearable electronic technology demand advanced power sources to be flexible, deformable, durable, and sustainable. An ionic-solution-modified conductive hydrogel-based triboelectric nanogenerator (TENG) has advantages in wearable devices. However, fabricating a conductive hydrogel with better mechanical and electrical properties is still a challenge. Herein, a simple approach is developed to insert ion-rich pores inside the hydrogel, followed by ionic solution soaking. The suggested ionic conductive hydrogel is obtained by cross-linking the polyvinyl alcohol (PVA) hydrogel and carboxymethyl cellulose sodium salt (CMC), followed by soaking in the ionic solution. Furthermore, a flexible and shape-adaptable single-electrode TENG (S-TENG) is fabricated by combinations of ionic-solution-modified dual-cross-linked CMC/PVA hydrogel and silicone rubber. Additionally, the effects of the CMC concentration, type of ionic solution, and concentration of optimized ionic solutions on the hydrogel properties and S-TENG output performance are studied systematically. The well-dispersed CMC- and PVA-based hydrogel provides ion-rich pores with high ion migration, leading to enhanced conductivity. The fabricated S-TENG delivers maximum output performance in terms of voltage, current, and charge density of ∼584 V, 25 µA, and 120 µC/m2, respectively. The rectified S-TENG-generated energy is used to charge capacitors and to power a portable electronic display. In addition to energy harvesting, the S-TENG is successfully demonstrated as a touch sensor that can automatically control the light and the speaker based on human motions. This investigation provides a deep insight into the influence of the hydrogel on the device performance and gives a guidance for designing and fabrication of highly flexible and stretchable TENGs.

14.
Nanoscale ; 15(8): 3978-3990, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36723257

RESUMO

The development of aqueous zinc-ion batteries (AZiBs) towards practical implementations is hampered by unsuitable host cathode materials. Herein, we reported a high-capacity, stable, and long-cycle-life (10 000 cycles) oxygenated copper vanadium selenide composite material (Cu0.59V2O5/Cu0.828V2O5@Cu1.8Se1/Cu3Se2, denoted as O-CuVSe) as a cathode for AZiBs. The newly constructed O-CuVSe composite cathode can be operated in the wide potential window of 0.4-2.0 V, exhibiting a high specific capacity of 154 mA h g-1 at 0.2 A g-1 over 100 cycles. Interestingly, the O-CuVSe composite cathode delivered excellent specific capacities of 117 and 101.4 mA h g-1 over 1000 cycles at 1 and 2 A g-1, respectively. Even at a high current density of 5 A g-1, the cathode delivered a high reversible capacity of 74.5 mA h g-1 over an ultra-long cycling life of 10 000 cycles with no obvious capacity fading. Apart from this, the cathode exhibited excellent rate capability at different current densities. The superior electrochemical properties originate from the synergistic effects between the oxygen vacancy engineering and interlayer doping of Cu ions to increase the structural stability during the cycling, enhancing the electron/ion transport kinetics. Moreover, the Zn2+ storage mechanism in the Zn/O-CuVSe aqueous rechargeable battery was explored. This study provides a new opportunity for the fabrication of different kinds of a new class of cathode materials for high-voltage and high-capacity AZiBs and other energy storage devices.

15.
Small Methods ; 7(3): e2201315, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642860

RESUMO

In order to achieve a sustainable future, researchers must continue to research improved electrode materials. Considering the high electronic conductivity, versatile redox activity, and enhanced energy storage performance, nanostructures have been employed as a novel electrode material for high-performance lithium-ion batteries (LIBs) and supercapacitors. Herein, carbon-coated selenium-rich trimetallic selenide (Cu2 NiSnSe4 @C) nanoparticles (NPs) as an efficient electrode material in energy storage devices are prepared. The prepared core-shell Cu2 NiSnSe4 @C NPs electrode is employed as an anode material for LIBs, which demonstrated a high reversible specific capacity of 988.46 mA h g-1 over 100 cycles at 0.1 A g-1 with good rate capability. Additionally, the core-shell Cu2 NiSnSe4 @C NPs electrode exhibited an outstanding capacity of 202.5 mA h g-1 at 5 A g-1 even after 10 000 cycles. Exploiting the synergistic characteristics, the core-shell Cu2 NiSnSe4 @C NPs material is also investigated as a battery-type electrode for hybrid supercapacitors. The assembled hybrid supercapacitor with Cu2 NiSnSe4 @C NPs and activated carbon showed excellent rate capability including high power (5597.77 W kg-1 ) and energy (64.26 Wh kg-1 ) densities. Considering the simple synthesis and enhanced energy storage properties, carbon-coated selenium-rich trimetallic selenide can be used as a durable electrode material for practical energy storage devices.

16.
Nanoscale ; 14(36): 13236-13247, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36052664

RESUMO

Inspired by the desire to solve the energy-related issues in remote sensing applications, internet of things, wireless autonomous devices, and self-powered portable electronic devices, triboelectric nanogenerators (TENGs) have been highly promoted. However, for use in the specified applications, especially in wearable and biomedical devices, environmental-friendly materials are required. Herein, an eco-friendly pectin polymer is used as a positive triboelectric material to fabricate a TENG with excellent output performance. Working in conjunction with a polyimide, the polyimide and microarchitected pectin (MA@pectin) polymer film-based TENG (PP-TENG) generated open circuit voltage (VOC), short circuit current (ISC), and charge density (QSC) of ∼300 V, 14 µA, and 70 µC cm-2, respectively, exhibiting remarkable enhancement compared to the TENG based on polyimide/pristine pectin polymer (VOC, ISC, and QSC of 170 V, 7.6 µA, and 47 µC cm-2, respectively) under similar operating conditions. The output performance of the PP-TENG is particularly reliant on the pectin concentration, indicating an optimum concentration of 9 wt%. The improved performance of the PP-TENG was systematically analyzed and explained in terms of pectin concentration, dielectric constant, and surface roughness. Furthermore, the PP-TENG can power portable electronic devices and light-emitting diodes to prove the capability of the TENG in practical applications. The fabricated PP-TENG is anticipated to be a sustainable energy harvester via a low-cost and facile approach.

17.
Adv Sci (Weinh) ; 9(18): e2200155, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35466570

RESUMO

Rational architecture design of the artificial protective layer on the zinc (Zn) anode surface is a promising strategy to achieve uniform Zn deposition and inhibit the uncontrolled growth of Zn dendrites. Herein, a red phosphorous-derived artificial protective layer combined with a conductive N-doped carbon framework is designed to achieve dendrite-free Zn deposition. The Zn-phosphorus (ZnP) solid solution alloy artificial protective layer is formed during Zn plating. Meanwhile, the dynamic evolution mechanism of the ZnP on the Zn anode is successfully revealed. The concentration gradient of the electrolyte on the electrode surface can be redistributed by this protective layer, thereby achieving a uniform Zn-ion flux. The fabricated Zn symmetrical battery delivers a dendrite-free plating/stripping for 1100 h at the current density of 2.0 mA cm-2 . Furthermore, aqueous Zn//MnO2 full cell exhibits a reversible capacity of 200 mAh g-1 after 350 cycles at 1.0 A g-1 . This study suggests an effective solution for the suppression of Zn dendrites in Zn metal batteries, which is expected to provide a deep insight into the design of high-performance rechargeable aqueous Zn-ion batteries.

18.
Small ; 18(20): e2200822, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35419981

RESUMO

Triboelectric nanogenerators (TENGs) are one of the most trending energy harvesting devices because of their efficient and simple mechanism in harvesting mechanical energy from the environment into electricity. Herein, ferroelectric and dielectric bismuth tungstate (Bi2 WO6 (BWO)) with a marigold flower-like structure is prepared via a hydrothermal method, which is embedded in poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), forming a PVDF-HFP/BWO composite polymer film (CPF) to fabricate TENGs. Generally, the ferroelectric materials exhibit a large piezoelectric coefficient, high electrostatic dipole moment, and high dielectric constant. The prepared PVDF-HFP/BWO CPF reveals a high polar crystalline ß-phase which leads to enhanced piezoelectric and ferroelectric properties of the CPF, thus resulting in the increased electrical performance of the fabricated TENG. The electrical output performance of the proposed TENG is systematically investigated by varying the amount of BWO material embedded in the PVDF-HFP polymer. The fabricated PVDF-HFP/2.5 wt% BWO CPF-based TENG device exhibits the highest electrical output performance. Additionally, the robust test of the TENG device is conducted to investigate the electrical performance for long-term durability and mechanical stability. Finally, the proposed TENG is operated as a self-powered sensor, harvesting mechanical energy from daily life human activities, and powering various low-power portable electronics.


Assuntos
Bismuto , Nanotecnologia , Humanos , Nanotecnologia/métodos , Polímeros/química , Compostos de Tungstênio , Compostos de Vinila
19.
Adv Sci (Weinh) ; 9(8): e2104877, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35064771

RESUMO

Evolving cost-effective transition metal phosphides (TMPs) using general approaches for energy storage is pivotal but challenging. Besides, the absence of noble metals and high electrocatalytic activity of TMPs allow their applicability as catalysts in oxygen evolution reaction (OER). Herein, CoNiP-CoP2 (CNP-CP) composite is in situ deposited on carbon fabric by a one-step hydrothermal technique. The CNP-CP reveals hybrid nanoarchitecture (3D-on-1D HNA), i.e., cashew fruit-like nanostructures and nanocones. The CNP-CP HNA electrode delivers higher areal capacity (82.8 µAh cm-2 ) than the other electrodes. Furthermore, a hybrid cell assembled with CNP-CP HNA shows maximum energy and power densities of 31 µWh cm-2 and 10.9 mW cm-2 , respectively. Exclusively, the hybrid cell demonstrates remarkable durability over 30 000 cycles. In situ/operando X-ray absorption near-edge structure analysis confirms the reversible changes in valency of Co and Ni elements in CNP-CP material during real-time electrochemical reactions.  Besides, a quasi-solid-state device unveils its practicability by powering electronic components. Meanwhile, the CNP-CP HNA verifies its higher OER activity than the other catalysts by revealing lower overpotential (230 mV). Also, it exhibits relatively small Tafel slope (38 mV dec-1 ) and stable OER activity over 24 h. This preparation strategy may initiate the design of advanced TMP-based materials for multifunctional applications.

20.
Small ; 18(10): e2105185, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35023621

RESUMO

The facile and cost-effective fabrication of hybrid nanostructures comprised of hollow mixed metallic chalcogenides has attracted growing interest in the development of high-performance energy storage devices. Herein, multi-component (nickel-cobalt-copper-sulfides/selenides (NCCS/NCCSe)) hollow nanocubes (HNCs) are prepared via a single-step sulfurization/selenization process. The NCCS material shows interior HNCs, and the NCCSe material exhibits slightly formed porous cubes. Both the prepared materials demonstrate higher charge storage performance than the precursor NCC NCs owing to the improved surface morphology and addition of sulfur and selenium ions. Particularly, the NCCS HNCs electrode reveals superior specific capacity (capacitance) (70.32 mAh g-1 (666.20 F g-1 ) at 5 mA cm-2 ) along with excellent cycling stability of 108.6% even after 10 000 cycles. Interestingly, the electrode delivers a good rate capability of 83.5% at a high current density of 20 mA cm-2 . The feasibility of the battery-type NCCS HNCs as a positive electrode is explored by constructing an aqueous electrochemical hybrid capacitor (AEHC). The AEHC exhibits maximum energy and power densities of 23.15 Wh kg-1 and 7899.08 W kg-1 , respectively. Remarkably, it demonstrates superior long-life cycling stability even after 10 000 cycles (120.6% retention). The suitability of AEHC for practical application is also tested by driving electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...