Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 356: 141895, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579947

RESUMO

The over-exploitation of antibiotics in food and farming industries ruined the environmental and human health. Consequently, electrochemical sensors offer significant advantages in monitoring these compounds with high accuracy. Herein, MOF-derived hollow Co3S4@MoS2 (CS@MS) heterostructure has been prepared hydrothermally and applied to fabricate an electrochemical sensor to monitor nitrofuran class antibiotic drug. Various spectroscopic methodologies have been employed to elucidate the structural and morphological information. Our prepared electrocatalyst has better electrocatalytic performance than bare and other modified glassy carbon electrodes (GCE). Our CS@MS/GCE sensor exhibited a highly sensitive detection by offering a low limit of detection, good sensitivity, repeatability, reproducibility, and stability results. In addition, our sensor has shown a good selectivity towards the target analyte among other potential interferons. The practical reliability of the sensor was measured by analyzing various real-time environmental and biological samples and obtaining good recovery values. From the results, our fabricated CS@MS could be an active electrocatalyst material for an efficient electrochemical sensing application.


Assuntos
Cobalto , Técnicas Eletroquímicas , Furazolidona , Estruturas Metalorgânicas , Molibdênio , Técnicas Eletroquímicas/métodos , Furazolidona/análise , Catálise , Cobalto/química , Cobalto/análise , Molibdênio/química , Estruturas Metalorgânicas/química , Eletrodos , Dissulfetos/química , Limite de Detecção , Reprodutibilidade dos Testes , Antibacterianos/análise
2.
Food Chem ; 450: 139152, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38653046

RESUMO

The development of a robust electrocatalyst for the electrochemical sensor for hazardous pesticides will reduce its effects on the ecosystem. Herein, we synthesized the robust manganese cobalt phosphide (MnCoP) - Core-shell as an electrochemical sensor for the determination of hazardous pesticide methyl parathion (MP). The MnCoP- Core-shell was prepared with the sustainable self-template route can help with the larger surface area. The Core-shell structure of MnCoP possesses a higher active surface area which increases the electrocatalytic performance and is utilized to improve the electrochemical MP reduction with the synergism of the core and shell structure. Remarkably, it realizes the higher sensitivity (0.014 µA µM-1 cm-2) of MnCoP- Core-shell/GCE achieves towards MP with lower limit of detection (LoD 50 nM) and exceptional recovery rate of MP in vegetable samples are achieved with the differential pulse voltammetry (DPV) technique. The MnCoP- Core-shell electrode reserved their superior electrochemical performances with high reproducibility and repeatability. This prominent activity of the MnCoP core-shell towards the MP in real sample analysis, makes it a promising electrochemical sensor for the detection of MP.

3.
J Colloid Interface Sci ; 643: 600-612, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37003869

RESUMO

Engineering the nanostructure of an electrocatalyst is crucial in developing a high-performance electrochemical sensor. This work exhibits the hydrothermal followed by annealing synthesis of niobium oxide/niobium carbide/reduced graphene oxide (NbO/NbC/rGO) ternary nanocomposite. The oval-shaped NbO/NbC nanoparticles cover the surface of rGO evenly, and the rGO nanosheets are interlinked to produce a micro-flower-like architecture. The NbO/NbC/rGO nanocomposite-modified electrode is presented here for the first time for the rapid and sensitive electrochemical detection of the anticancer drug methotrexate (MTX). Down-sized NbO/NbC nanoparticles and rGO's high surface area provide many active sites with a rapid electron transfer rate, making them ideal for MTX detection. In comparison to previously reported MTX sensors, the developed drug sensor exhibits a lower oxidation potential and a higher peak current responsiveness. The constructed sensors worked analytically well under optimal conditions, as shown by a low detection limit of 1.6 nM, a broad linear range of 0.1-850 µM, and significant recovery findings (∼98 %, (n = 3)) in real samples analysis. Thus, NbO/NbC/rGO nanocomposite material for high-performance electrochemical applications seems promising.


Assuntos
Antineoplásicos , Grafite , Nanocompostos , Óxidos/química , Nióbio/química , Metotrexato , Técnicas Eletroquímicas , Grafite/química , Nanocompostos/química
4.
Inorg Chem ; 62(4): 1437-1446, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36652943

RESUMO

An electrocatalyst with a large active site is critical for the development of a high-performance electrochemical sensor. This work demonstrates the fabrication of an iron diselenide (FeSe2)-modified screen-printed carbon electrode (SPCE) for the electrochemical determination of furaltadone (FLD). It has been prepared by the facile method and systematically characterized with various microscopic/spectroscopic approaches. Due to advantageous physiochemical properties, the FeSe2/SPCE showed a low charge-transfer resistance value of 200 Ω in 5.0 mM [Fe(CN)6]3-/4- containing 0.1 M KCl. More importantly, the FeSe2/SPCE exhibited superior catalytic performance compared to the bare SPCE for FLD sensing based on the electrochemical response in terms of a peak potential of -0.44 V (vs Ag/AgCl (sat. KCl)) and cathodic response current of -22.8 µA. Operating at optimal conditions, the FeSe2-modified electrode showed wide linearity from 0.01 to 252.2 µM with a limit of detection of 0.002 µM and sensitivity of 1.15 µA µM-1 cm-2. The analytical performance of the FeSe2-based platform is significantly higher than many previously reported FLD electrochemical sensors. Furthermore, the FeSe2/SPCE also has a promising platform for FLD detection with high sensitivity, good selectivity, excellent stability, and robust reproducibility. Thus, the finding above shows that the FeSe2/SPCE is a highly suitable candidate for the electrochemical determination of glucose levels for real-time applications such as in human urine and river water samples.

5.
Chemosphere ; 318: 137948, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36716937

RESUMO

This study demonstrates a hydrothermal method to prepare perovskite-type potassium niobate (KNbO3) through deep eutectic solvent (DES), which is further used as an electrode material for the determination of bisphenol A (BPA). The as-synthesized KNbO3 was systematically characterized by different microscopic and spectroscopic techniques. The KNbO3-modified electrode demonstrates excellent electrocatalytic activity for BPA compared to the pristine electrode. The enhanced performance of the proposed sensor is attributed to the numerous active sites, large electrochemical surface area, high electrical conductivity, and rapid electron transfer. The fabricated sensor shows a wide detection range (0.01-84.3 µM), a low limit of detection (0.003 µM), a high sensitivity (0.51 µA µM-1 cm-2), and good anti-interference abilities towards the BPA detection by linear sweep voltammetry method. Besides, it was successfully applied to determining BPA in food samples, demonstrating good practicability. This design paves a new way to fabricate efficient electrode material for various electrochemical applications using a DES medium.


Assuntos
Solventes Eutéticos Profundos , Técnicas Eletroquímicas , Eletrodos , Técnicas Eletroquímicas/métodos
6.
Chemosphere ; 313: 137553, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36521748

RESUMO

Boosting catalytic performance as a vital role for an electrochemical sensor for monitoring various hazardous nitro drugs. Herein, an inexpensive, facile, and eco-friendly construction of praseodymium tungstate decorated on three dimensional porous biocarbon (PrW/3D-PBC) for electrochemical determination of carcinogenic residue furazolidone (FZ). The nanostructured PrW nanoparticles were prepared by solvent evaporation from peroxo-tungstic acid and 3D-PBC was prepared from biomass precursor under the carbonization method. Furthermore, the composite of PrW decorated on 3D-PBC was prepared by an ultrasonic-assisted wet chemical approach. Besides, the composite characterization of crystalline, functional group, degree of carbonization, chemical states, and morphology were utilized by theXRD, FTIR, RAMAN, XPS, and FESEM analysis. These 3D porous carbon decorated PrW nanoparticles facilitate the electrochemical anchoring sites, surface area, and ease of diffusion layers towards the detection of hazardous nitro pollutant FZ by using CV analysis. The low LOD and high sensitivity were achieved by FZ determination through using LSV and DPV techniques. The practical capability of the PrW/3D-PBC/GCE sensor was determined by using aquatic samples to achieve a good recovery result. These results instigate that the PrW/3D-PBC will be an efficient electrocatalytic material for FZ sensor in environmental aquatic samples.


Assuntos
Furazolidona , Praseodímio , Eletrodos , Técnicas Eletroquímicas/métodos , Porosidade
7.
Food Chem ; 404(Pt A): 134516, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240561

RESUMO

2,4,6-Trichlorophenol (TCP) is the most widely used pesticide in the world and has a devastating effect on the environment and human health. As a result of the use of pyrochlore type La2Sn2O7 hexagonal nanosheet (La2Sn2O7 HNS) modified electrode, this work reports on the quick and sensitive electrochemical detection of TCP. The La2Sn2O7 HNS is reported here for the first time and has been made using a simple precipitation and calcination technique. The crystal structure and surface morphologies of La2Sn2O7 HNS have been characterized using XRD, XPS, HR-TEM, and FE-SEM analyses. Detection limits of 0.074 µM and sensitivity of 1.5 µA µM-1 cm-2 were achieved using the La2Sn2O7 HNS for TCP detection. It also showed decent selectivity among the common interfering molecules. Additionally, the La2Sn2O7 HNS/GCE sensor was able to detect TCP in water and vegetable samples with >90 % recovery, proving its appropriateness for quick TCP detection.


Assuntos
Clorofenóis , Praguicidas , Humanos , Lantânio/química , Técnicas Eletroquímicas/métodos , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...