Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(12): 15605-15616, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477104

RESUMO

Improving the quality of the buried interface is decisive for achieving stable and high-efficiency perovskite solar cells. Herein, we report the interface engineering by using dipolar 2,4-difluoro-3,5-dichloroaniline (DDE) as the adhesive between titanium dioxide (TiO2) and MAPbI3. By manipulation of the anchoring groups of DDE, this molecule not only passivated defects of TiO2 but also optimized the energy level alignment. Furthermore, the perovskite film on the modified TiO2 surface showed improved crystallinity, released residual stress, and reduced trap states. Therefore, these benefits directly contribute to achieving a power conversion efficiency of up to 22.10%. The unencapsulated device retained 90% of initial power conversion efficiencies (PCE) after continuous light illumination for 1000 h and 93% of initial PCE after exposure to air with a relative humidity of 30-40% for over 3000 h. Moreover, the performance of PSCs based on FA0.15MA0.85PbI3 has also increased from 20.48 to 23.51%. Our results demonstrate the effectiveness and universality of dipolar halogen-substituted arylamine (DDE) for enhancing PSC performance.

2.
ACS Appl Mater Interfaces ; 15(31): 38154-38162, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37505507

RESUMO

The power conversion efficiency (PCE) and stability of n-i-p perovskite solar cells (PSCs) are significantly affected by inherent defects of SnO2 and perovskite layers. In this work, we incorporate 2-bromo-3-thiophenic acid (BrThCOOH) as a multifunctional passivant to simultaneously passivate the defects of SnO2 surface and perovskite layer. BrThCOOH permeates evenly into the MAPbI3 and coordinates with Pb2+ and iodine vacancies (VI+) to reduce surface defect density and inhibit the decomposition of MAPbI3. Carboxylic acid effectively passives the oxygen vacancy on the surface of SnO2 through coordination bonds, reducing the probability of electron capture by SnO2 surface defects, thus contributing to electron transport in device. The interaction of BrThCOOH with MAPbI3 and SnO2 surfaces leads to an upward shift in energy levels, reducing energy loss during charge migration. The optimal MAPbI3 device with BrThCOOH-modified SnO2 (T-SnO2) reveals an improved PCE of 21.12%, much higher than that of the control one (19.12%). The hydrophobicity of BrThCOOH-modified MAPbI3 is also improved, which is beneficial to the durability of the device. After 100 h of storage in the environment, the generated PSCs maintain their initial PCE of 75%, demonstrating excellent long-term stability without any encapsulation.

3.
Chemistry ; 28(57): e202201675, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35792802

RESUMO

Non-fullerene acceptors with fused-ring structures have rapidly improved the performance of organic solar cells over the past five years, but they still suffer from synthetic complexity and thus high material costs, one of the major obstacles of hindering their commercialization process. The construction of non-fused ring acceptors (NFRAs) has recently been regarded as a feasible solution due to their facile synthesis and satisfactory device performances. Thus in this concept, we highlight the important progress of NFRAs in recent years, and discuss the key relationship between molecular design strategies and device performance. Finally, we provide some potential molecular insights for the future design of high-performance NFRAs.

4.
Mater Horiz ; 8(3): 1008-1016, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821331

RESUMO

Side-chain engineering on nonfullerene acceptors (NFAs) is crucial for modulating their solubility and crystallinity as well as packing behaviours in active layers to pursue high-performance organic solar cells (OSCs). High weight ratios of side chains are generally used by NFAs for the desired device efficiencies. Side-chain economy has seldom been discussed despite increased cost and difficulties in synthesis when optimizing the molecular design. Herein, we introduce 7H-dibenzo[c,g]carbazole (DCB) as an electron-donating core to design unfused-ring acceptors (UFAs) with a dramatically low weight ratio of side chains. DCB-4F has thus been designed and compared with the carbazole cored analogue (CB-4F). The unique conformation of the DCB core endows DCB-4F with higher solubility (8.2 mg mL-1 in chloroform) compared to CB-4F (2.2 mg mL-1) when using the same side chains. Featuring a lowest unoccupied molecular orbital (LUMO) level of -3.86 eV and an optical bandgap of 1.55 eV, the DCB-4F film exhibits an absorption profile (maximum 667 nm) complementary to polymer donor PM6. The PM6:DCB-4F as-cast OSCs deliver a power conversion efficiency (PCE) of 9.56% with a high open-circuit voltage (VOC) of 1.00 V. By adding 10 wt% PC71BM into the casting solutions, a greatly improved PCE of 11.17% is readily achieved, which is one of the highest PCEs for as-cast single-junction UFA-based devices. The PM6:DCB-4F based blends show homogeneous nano-fiberous morphology and higher hydrophobicity. The design of conformation-tuned NFAs using sterically hindered DCB-like cores is promising to achieve highly efficient as-cast OSCs.

5.
Chemistry ; 27(72): 18103-18108, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34751986

RESUMO

Merocyanine (MC) dyes exhibit facile synthesis and attractive optical properties, making them widely studied as the donor materials in organic solar cells (OSCs). In this study, for the first time, simple indole-based MCs are successfully designed as unfused nonfullerene acceptors (NFAs) for OSCs by forming dimers with A-D-π-D-A structure, which possess enhanced photostability compared to the well-known ITIC acceptor and high electron mobility in blend films. When blended with P3HT donor, one of the dimers, i. e. Z2, shows a good cell efficiency of 3.53 %, which outperforms the performance of most of P3HT/NFA blends, particularly for unfused systems, and thus indicates good potential of simple MCs as NFAs.

6.
Small ; 17(18): e2007746, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33738971

RESUMO

Organic solar cells (OSCs) can achieve greatly improved power conversion efficiency (PCE) by incorporating suitable additives in active layers. Their structure design often faces the challenge of operation generality for more binary blends. Herein, a simple dithieno[3,2-b:2',3'-d]pyrrole-rhodanine molecule (DR8) featuring high compatibility with polymer donor PM6 is developed as a cost-effective third component. By employing classic ITIC-like ITC6-4Cl and Y6 as model nonfullerene acceptors (NFAs) in PM6-based binary blends, DR8 added PM6:ITC6-4Cl blends exhibit significantly promoted energy transfer and exciton dissociation. The PM6:ITC6-4Cl:DR8 (1:1:0.1, weight ratio) OSCs contribute an exciting PCE of 14.94% in comparison to host binary devices (13.52%), while PM6:Y6:DR8 (1:1.2:0.1) blends enable 16.73% PCE with all simultaneously improved photovoltaic parameters. To the best of the knowledge, this performance is among the best for ternary OSCs with simple small molecular third components in the literature. More importantly, DR8-added ternary OSCs exhibit much improved device stability against thermal aging and light soaking over binary ones. This work provides new insight on the design of efficient third components for OSCs.

7.
ACS Appl Mater Interfaces ; 12(19): 21633-21640, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32314906

RESUMO

In this study, an efficient ternary bulk-heterojunction (BHJ) organic solar cell (OSC) is demonstrated by incorporating two acceptors, PC61BM and ITC6-4F, with a polymer donor (PM6). This reveals that the addition of PC61BM not only enhances the electron mobility of the derived BHJ blend but also facilitates exciton dissociation, resulting in a more balanced charge transport alongside with reduced trap-assisted charge recombination. Consequently, as compared to the pristine PM6/ITC6-4F device, the optimal ternary OSC is revealed to deliver an improved power conversion efficiency (PCE) of 15.11% with a boosted JSC, VOC, and fill factor (FF) simultaneously. The resultant VOC and FF are among the highest values recorded in the literature for the ternary OSCs with a PCE exceeding 15%. This result thus suggests that besides improving the charge transport characteristics in devices, incorporating a fullerene derivative as part of the acceptor can also improve the resultant VOC, which can reduce the energy loss to realize efficient organic photovoltaics.

10.
Nanoscale ; 10(33): 15454-15461, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30105328

RESUMO

Metal-organic frameworks (MOFs) provide great opportunities for synthesizing advanced electrode materials with hierarchical hollow architectures for energy storage. Herein, we report the facile fabrication of core-sheath nanoarrays (NAs) on carbon cloth (CC@CoO@S-Co3O4) for binder-free electrode materials with MOFs as versatile scaffolds. The hollow S-doped Co3O4 sheath has been facilely prepared using a two-step synthetic protocol, which includes the surface etching of CoO nanowires for synchronous in situ growth of well-aligned ZIF-67 and its following hydrothermal process. The synergistic effect between CC nanofibers and hollow ordered NAs ensures efficient mass and electron transport. The pseudocapacitive NAs present a highest areal specific capacitance of 1013 mF cm-2 at 1 mA cm-2. By assembling the same MOF-derived nanoporous carbons and NAs as the corresponding binder-free anode and cathode, the flexible all-solid-state asymmetric supercapacitors deliver a highest energy density of 0.71 mW h cm-3 at 21.3 mW cm-3 power density, together with 87.9% capacitance retention over 5000 continuous cycles.

11.
Adv Mater ; 30(16): e1707150, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29527772

RESUMO

A new electron-rich central building block, 5,5,12,12-tetrakis(4-hexylphenyl)-indacenobis-(dithieno[3,2-b:2',3'-d]pyrrol) (INP), and two derivative nonfullerene acceptors (INPIC and INPIC-4F) are designed and synthesized. The two molecules reveal broad (600-900 nm) and strong absorption due to the satisfactory electron-donating ability of INP. Compared with its counterpart INPIC, fluorinated nonfullerene acceptor INPIC-4F exhibits a stronger near-infrared absorption with a narrower optical bandgap of 1.39 eV, an improved crystallinity with higher electron mobility, and down-shifted highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels. Organic solar cells (OSCs) based on INPIC-4F exhibit a high power conversion efficiency (PCE) of 13.13% and a relatively low energy loss of 0.54 eV, which is among the highest efficiencies reported for binary OSCs in the literature. The results demonstrate the great potential of the new INP as an electron-donating building block for constructing high-performance nonfullerene acceptors for OSCs.

12.
Adv Mater ; 29(34)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28692752

RESUMO

In this work, a highly efficient parallel connected tandem solar cell utilizing a nonfullerene acceptor is demonstrated. Guided by optical simulation, each of the active layer thicknesses of subcells are tuned to maximize its light trapping without spending intense effort to match photocurrent. Interestingly, a strong optical microcavity with dual oscillation centers is formed in a back subcell, which further enhances light absorption. The parallel tandem device shows an improved photon-to-electron response over the range between 450 and 800 nm, and a high short-circuit current density (J SC ) of 17.92 mA cm-2 . In addition, the subcells show high fill factors due to reduced recombination loss under diluted light intensity. These merits enable an overall power conversion efficiency (PCE) of >10% for this tandem cell, which represents a ≈15% enhancement compared to the optimal single-junction device. Further application of the designed parallel tandem configuration to more efficient single-junction cells enable a PCE of >11%, which is the highest efficiency among all parallel connected organic solar cells (OSCs). This work stresses the importance of employing a parallel tandem configuration for achieving efficient light harvesting in nonfullerene-based OSCs. It provides a useful strategy for exploring the ultimate performance of organic solar cells.

13.
Sci Rep ; 6: 25355, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27140224

RESUMO

Three novel small molecules have been developed by side-chain engineering on benzo[1,2-b:4,5-b']dithiophene (BDT) core. The typical acceptor-donor-acceptor (A-D-A) structure is adopted with 4,8-functionalized BDT moieties as core, dioctylterthiophene as π bridge and 3-ethylrhodanine as electron-withdrawing end group. Side-chain engineering on BDT core exhibits small but measurable effect on the optoelectronic properties of small molecules. Theoretical simulation and X-ray diffraction study reveal the subtle tuning of interchain distance between conjugated backbones has large effect on the charge transport and thus the photovoltaic performance of these molecules. Bulk-heterojunction solar cells fabricated with a configuration of ITO/PEDOT:PSS/SM:PC71BM/PFN/Al exhibit a highest power conversion efficiency (PCE) of 6.99% after solvent vapor annealing.

14.
Phys Chem Chem Phys ; 18(11): 7978-86, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26956780

RESUMO

Four isostructural donor-acceptor alternating polymers of benzodithiophene (BDT)/naphthodifuran (NDF) and benzoselenadiazole (BSe)/benzothiadiazole (BT) have been developed and evaluated for organic photovoltaics. The substitution of one-atom (Se for S) in the accepting units exerts remarkable impact on the optoelectronic properties of polymers. Extended absorption, narrowed bandgap and higher HOMO energy levels were observed for Se-containing polymers in comparison to their S-containing counterparts. Theoretical calculations confirmed the measurable effect on energy levels as found in experimental studies. Bulk-heterojuction solar cells based on the BDT-BSe copolymer and [6,6]-phenyl-C71-butyric acid methyl ester (1 : 2, w/w) blend films deliver the best PCE of 5.40%. BSe-based polymers showed enhanced photovoltaic performances than BT-based polymers. The device performance is found to be strongly dependent on the processing conditions and morphology of the active layers.

15.
Phys Chem Chem Phys ; 17(12): 7848-56, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25715907

RESUMO

Three dialkylthio benzo[1,2-b:4,5-b']dithiophene (S-BDT) based polymers have been developed using different accepting units to tune their bandgaps. The polymer:PC71BM solar cells achieved the highest power conversion efficiency (PCE) of 4.51% without any post-treatment (such as annealing and solvent additive) in conventional single-cell devices. Joint photophysical, electrical and computational studies on the polymer based solar cells revealed the considerable impact of molecular planarity on polymer design. The polymer:PC71BM devices processed with 1,8-diiodooctane for improving their morphology afforded an improved PCE value of 5.63%, with a Voc of 0.83, a Jsc of 10.24 mA cm(-2) and a FF of 66.3%.

16.
Magn Reson Imaging ; 33(1): 166-73, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25311569

RESUMO

Dynamic contrast-enhanced MRI is becoming an increasingly important tool to assess tumors and their response to treatment. In the most common method of computing tumor perfusion parameters, the concentration of the injected contrast agent is first computed in both tumor and blood which is subsequently fit to a perfusion model, typically the Tofts two compartment model. However, this strategy can be highly sensitive to errors in the excitation flip angle and noise. More recently, a simpler method of determining perfusion was developed in which the difference signal, obtained by subtracting the measured time course signal by the signal prior to bolus arrival, is utilized in lieu of the concentration values. The goal of this work is to compare the performance of these two strategies with simulation experiments in the presence of flip angle errors and different levels of image signal to noise ratios (SNRs). Results show that with the conventional method, if assumed pre-contrast T1 of blood is used, large errors in perfusion (exceeding 400% and 200% for K(trans) and ve, respectively) can occur in the presence of flip angle deviations typically observed in vivo. However, when baseline T1 values are measured for both tumor and blood, the errors become a function of flip angle difference between the two locations, with nearly no error if the flip angle errors are identical at both locations. The errors are substantially smaller with the signal difference strategy (less than 100% for both K(trans) and ve). The latter method also yields more consistent perfusion values at varying SNR levels. The results suggest that measuring the actual flip angle may be critical for obtaining absolute perfusion values, but in studies in which relative changes in perfusion is of primary interest or if true flip angles are not known, the signal difference strategy may be preferred over the standard concentration-based method.


Assuntos
Meios de Contraste/química , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Simulação por Computador , Humanos , Imageamento Tridimensional , Modelos Estatísticos , Perfusão , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Incerteza
17.
Phys Chem Chem Phys ; 16(48): 26893-900, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25376277

RESUMO

A two-dimensional (2D) low bandgap polymer () based on dithieno[3,2-b:2',3'-d]silole (DTS) with phenyl substitution on the bridging silicon atom and thiazolo[5,4-d]thiazole (TTz) was designed and synthesized for photovoltaic applications. The impact of conjugated side chains on the optical, electrochemical and energy levels of the polymer was studied. The phenyl substituted DTS polymer exhibited a 0.16 eV down-shifted highest occupied molecular orbital (HOMO) energy level and ca. 0.1 eV narrowed bandgap in comparison to the corresponding polymers with alkyl substitution on the silicon bridge. The influence of the blend weight ratio, the PFN layer, mixed solvent, THF exposure and polar solvent treatment and thermal annealing on the performance of :PC71BM devices was studied. : PC71BM (1 : 1, weight ratio) devices delivered the highest power conversion efficiency of 2.14% by using the PFN layer and THF annealing. Thermal annealing was found to exert a negative effect on the device performance. The morphology evolution of blend films processed with different solvents explained the difference in device performance. The results indicate that phenyl substitution is an effective way to tune the HOMO and bandgap of polymer donors for enhanced photovoltaic performance with the as-demonstrated 2D-conjugated DTS structure.

18.
Magn Reson Med ; 67(2): 470-6, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21656562

RESUMO

In radial MR imaging, streaking artifacts contaminating the entire field of view can arise from regions at the outer edges of the prescribed field of view. This can occur even when the Nyquist criterion is satisfied within the desired field of view. These artifacts become exacerbated when parts of the object lie in the superior/inferior regions of the scanner where the gradient strengths become weakened. When multiple coil arrays are used for signal reception, coils at the outer edges can be disabled before data acquisition to reduce the artifact levels. However, as the weakened gradient strengths near the edges often distort the object, causing the signal to become highly concentrated into a small region, the streaks are often not completely removed. Data from certain coils can also be excluded during reconstruction by visually inspecting the individual coil images, but this is impractical for routine use. In this work, a postprocessing method is proposed to automatically identify those coils whose images contain high levels of streaking for subsequent exclusion during reconstruction. The proposed method was demonstrated in vivo dynamic contrast enhanced MRI datasets acquired using a three-dimensional hybrid radial sequence. The results demonstrate that the proposed strategy substantially improves the image quality and show excellent agreement with images reconstructed with manually determined coil selection.


Assuntos
Algoritmos , Artefatos , Aumento da Imagem/instrumentação , Processamento de Imagem Assistida por Computador/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Meios de Contraste , Desenho de Equipamento , Coração/anatomia & histologia , Humanos , Pulmão/anatomia & histologia , Imagens de Fantasmas , Sensibilidade e Especificidade
19.
Magn Reson Med ; 66(1): 248-54, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21695727

RESUMO

Assessment of lung effective transverse relaxation time (T(2)*) may play an important role in the detection of structural and functional changes caused by lung diseases such as emphysema and chronic bronchitis. While T(2)* measurements have been conducted in both animals and humans at 1.5 T, studies on human lung at 3.0 T have not yet been reported. In this work, ultrashort echo time imaging technique was applied for the measurement and comparison of T(2)* values in normal human lungs at 1.5 T and 3.0 T. A 2D ultrashort echo time pulse sequence was implemented and evaluated in phantom experiments, in which an eraser served as a homogeneous short T(2)* sample. For the in vivo study, five normal human subjects were imaged at both field strengths and the results compared. The average T(2)* values measured during free-breathing were 2.11(±0.27) ms at 1.5 T and 0.74(±0.1) ms at 3.0 T, respectively, resulting in a 3.0 T/1.5 T ratio of 2.9. Furthermore, comparison of the relaxation values at end-expiration and end-inspiration, accomplished through self-gating, showed that during normal breathing, differences in T(2)* between the two phases may be negligible.


Assuntos
Diagnóstico por Imagem/métodos , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/patologia , Imagem Cinética por Ressonância Magnética/métodos , Adulto , Humanos , Masculino , Imagens de Fantasmas , Padrões de Referência , Respiração
20.
IEEE Trans Neural Netw ; 21(10): 1685-90, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20729164

RESUMO

The Gaussian process (GP) approaches to classification synthesize Bayesian methods and kernel techniques, which are developed for the purpose of small sample analysis. Here we propose a GP model and investigate it for the facial expression recognition in the Japanese female facial expression dataset. By the strategy of leave-one-out cross validation, the accuracy of the GP classifiers reaches 93.43% without any feature selection/extraction. Even when tested on all expressions of any particular expressor, the GP classifier trained by the other samples outperforms some frequently used classifiers significantly. In order to survey the robustness of this novel method, the random trial of 10-fold cross validations is repeated many times to provide an overview of recognition rates. The experimental results demonstrate a promising performance of this application.


Assuntos
Algoritmos , Identificação Biométrica/métodos , Modelos Estatísticos , Reconhecimento Automatizado de Padrão/métodos , Inteligência Artificial , Feminino , Humanos , Japão , Distribuição Normal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...