Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(15): e2308415, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38265890

RESUMO

The topological Hall effect (THE) is the transport response of chiral spin textures and thus can serve as a powerful probe for detecting and understanding these unconventional magnetic orders. So far, the THE is only observed in either noncentrosymmetric systems where spin chirality is stabilized by Dzyaloshinskii-Moriya interactions, or triangular-lattice magnets with Ruderman-Kittel-Kasuya-Yosida-type interactions. Here, a pronounced THE is observed in a Fe-Co-Ni-Mn chemically complex alloy with a simple face-centered cubic (fcc) structure across a wide range of temperatures and magnetic fields. The alloy is shown to have a strong magnetic frustration owing to the random occupation of magnetic atoms on the close-packed fcc lattice and the direct Heisenberg exchange interaction among atoms, as evidenced by the appearance of a reentrant spin glass state in the low-temperature regime and the first principles calculations. Consequently, THE is attributed to the nonvanishing spin chirality created by strong spin frustration under the external magnetic field, which is distinct from the mechanism responsible for the skyrmion systems, as well as geometrically frustrated magnets.

2.
Natl Sci Rev ; 10(12): nwad079, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37954203

RESUMO

Lunar glasses with different origins act as snapshots of their formation processes, providing a rich archive of the Moon's formation and evolution. Here, we reveal diverse glasses from Chang'E-5 (CE-5) lunar regolith, and clarify their physical origins of liquid quenching, vapor deposition and irradiation damage respectively. The series of quenched glasses, including rotation-featured particles, vesicular agglutinates and adhered melts, record multiple-scale impact events. Abundant micro-impact products, like micron- to nano-scale glass droplets or craters, highlight that the regolith is heavily reworked by frequent micrometeorite bombardment. Distinct from Apollo samples, the indigenous ultra-elongated glass fibers drawn from viscous melts and the widespread ultra-thin deposited amorphous rims without nanophase iron particles both indicate a relatively gentle impact environment at the CE-5 landing site. The clarification of multitype CE-5 glasses also provides a catalogue of diverse lunar glasses, meaning that more of the Moon's mysteries, recorded in glasses, could be deciphered in future.

3.
Sci Adv ; 7(14)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33789905

RESUMO

Crack propagation is the major vehicle for material failure, but the mechanisms by which cracks propagate remain longstanding riddles, especially for glassy materials with a long-range disordered atomic structure. Recently, cavitation was proposed as an underlying mechanism governing the fracture of glasses, but experimental determination of the cavitation behavior of fracture is still lacking. Here, we present unambiguous experimental evidence to firmly establish the cavitation mechanism in the fracture of glasses. We show that crack propagation in various glasses is dominated by the self-organized nucleation, growth, and coalescence of nanocavities, eventually resulting in the nanopatterns on the fracture surfaces. The revealed cavitation-induced nanostructured fracture morphologies thus confirm the presence of nanoscale ductility in the fracture of nominally brittle glasses, which has been debated for decades. Our observations would aid a fundamental understanding of the failure of disordered systems and have implications for designing tougher glasses with excellent ductility.

4.
Adv Mater ; 32(4): e1906384, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31808585

RESUMO

Although various catalytic materials have emerged for hydrogen evolution reaction (HER), it remains crucial to develop intrinsically effective catalysts with minimum uses of expensive and scarce precious metals. Metallic glasses (MGs) or amorphous alloys show up as attractive HER catalysts, but have so far limited to material forms and compositions that result in high precious-metal loadings. Here, an Ir25 Ni33 Ta42 MG nanofilm exhibiting high intrinsic activity and superior stability at an ultralow Ir loading of 8.14 µg cm-2 for HER in 0.5 m H2 SO4 is reported. With an overpotential of 99 mV for a current density of 10 mA cm-2 , a small Tafel slope of 35 mV dec-1 , and high turnover frequencies of 1.76 and 19.3 H2 s-1 at 50 and 100 mV overpotentials, the glassy film is among the most intrinsically active HER catalysts, outcompetes any reported MG, representative sulfides, and phosphides, and compares favorably with other precious-metal-containing catalysts. The outstanding HER performance of the Ir25 Ni33 Ta42 MG film is attributed to the synergistic effect of the novel alloy system and amorphous structure, which may inspire the development of multicomponent alloys for heterogeneous catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...