Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 70(10): 3280-3288, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35245065

RESUMO

Flavonoids (dihydromyricetin, dihydroquercetin, epicatechin, and epigallocatechin) were applied to indicate the critical formation condition of the Amadori rearrangement product (ARP) in Maillard reaction performed under a two-step temperature rising process in the threonine-xylose model system. Threonine-ARP (Thr-ARP) was mixed with dihydromyricetin (DM), dihydroquercetin (DQ), epicatechin (EC), and epigallocatechin (EGC) before the heat treatment; then, the mixture was tested by liquid chromatography-mass spectrometry (LC-MS). The results showed that these flavonoids trapped the ARP and generated adducts. The A-ring of flavonoids (the meta-polyhydroxylated benzene ring) was the functional group to capture the Thr-ARP. The relative contents of the adducts of DM-Thr-ARP, DQ-Thr-ARP, EC-Thr-ARP, and EGC-Thr-ARP were compared with each other, and it was found that the structure of the C-ring of the flavonoids (the carbonyl group on C-4) significantly impeded the formation of adducts with Thr-ARP, while the number of hydroxyl groups on the B-ring had little influence. The formation of adducts delayed the degradation of Thr-ARP, decreased the production of α-dicarbonyl compounds, and suppressed Maillard browning. In this way, the flavonoids might trace the critical formation conditions of ARP during the two-step temperature rising process.


Assuntos
Flavonoides , Produtos Finais de Glicação Avançada , Domínio Catalítico , Produtos Finais de Glicação Avançada/química , Reação de Maillard , Xilose/química
2.
Food Chem ; 371: 131137, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562777

RESUMO

The role of amino acids and α-dicarbonyls in the flavor formation of Amadori rearrangement product (ARP) during thermal processing was investigated. Comparisons of the volatile compounds and their concentrations when N-(1-deoxy-α-d-ribulos-1-yl)-glycine reacted with different amino acids or glyoxal (GO) at 100 °C were executed. Additional amino acids, such as glycine (Gly), in ARP models contributed to the diversity of furanoids by the chain elongation of the derived formaldehyde. Whereas the monoanion of additional glutamic acid acted as nucleophile, favored 2-ethyl-3,5-dimethylpyrazine and 2,5-dimethylpyrazine formation; the nonionized amino group of additional lysine were involved in α-dicarbonyls formation, causing pyrazine and methylpyrazine accumulation in the ARP model. Moreover, the high dosage and pH stabilization of additional GO probably promoted the ARP degradation and deoxyosones retro-aldol cleavage, resulting in methylpyrazine rather than furanoids formation. The present work provided the guidance for the controlled flavor formation of ARP in industrial application.


Assuntos
Aminoácidos , Glicina , Aromatizantes , Glioxal , Reação de Maillard
3.
J Agric Food Chem ; 68(39): 10902-10911, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32893622

RESUMO

The interaction mechanism of (-)-epigallocatechin gallate (EGCG) with Amadori compound (Amadori rearrangement product, ARP) in xylose-alanine model reaction systems was investigated. The adducts between ARP and EGCG were identified as two ARP-EGCG isomers, two ARP-EGCG-H2O isomers, and multiple ARP-deoxypentosone (DP)-EGCG isomers. The structure of an isolated and purified ARP-EGCG adduct was analyzed by means of Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, liquid chromatography-time-of-flight (TOF)-mass spectrometry (LC-TOF-MS), and nuclear magnetic resonance (NMR). Using the two-dimensional NMR analyses, the structure of ARP-EGCG adducts was clarified to consist of a covalent linkage between the C12 position of the ARP and the C8 position of the A-ring of EGCG, presumably generated by the nucleophilic nature of the EGCG or aromatic substitution reactions. The results showed that slightly alkaline pH and higher temperature could facilitate this reaction. Additionally, the thermal stability of ARP-EGCG and its degradation products revealed that the decomposition pathways of this adduct altered the classic decomposition pathway of ARP, resulting in a lower browning rate and blocking the subsequent Maillard reaction.


Assuntos
Catequina/análogos & derivados , Produtos Finais de Glicação Avançada/química , Catequina/química , Temperatura Alta , Reação de Maillard , Espectrometria de Massas , Estrutura Molecular , Água/química
4.
J Agric Food Chem ; 68(6): 1714-1724, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31957424

RESUMO

(-)-Epigallocatechin gallate (EGCG) had a significant effect on Maillard reaction intermediate formation in the xylose/alanine model system. A trapping effect of EGCG on the reactive deoxyosones was observed to change the reaction pathways. The rate constant of Amadori rearrangement product (ARP) conversion to deoxyosones was decreased with EGCG addition, indicating an inhibition of ARP degradation. Dehydration improved the ARP formation during the thermal reaction and synergistically improved the yield of ARP with the EGCG trapping effect on the deoxyosones. Additionally, EGCG decreased the activation energy for the conversion of xylose/alanine to ARP (from 77.8 to 62.8 kJ/mol) and in turn accelerated the ARP formation. The effect of EGCG was further facilitated at the optimal conditions of 90 °C, at pH 7.5, and a molar ratio of xylose to alanine of 2:1, which improved the yield of ARP (N-(1-deoxy-d-xylulos-1-yl)alanine) from 2 to 95%.


Assuntos
Alanina/análogos & derivados , Catequina/análogos & derivados , Catequina/química , Produtos Finais de Glicação Avançada/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Reação de Maillard , Xilose/química , Xilulose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA