Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2281355, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37933089

RESUMO

Vaccination strategies that can induce a broad spectrum immune response are important to enhance protection against SARS-CoV-2 variants. We conducted a randomized, double-blind and parallel controlled trial to evaluate the safety and immunogenicity of the bivalent (5×1010viral particles) and B.1.1.529 variant (5×1010viral particles) adenovirus type-5 (Ad5) vectored COVID-19 vaccines administrated via inhalation. 451 eligible subjects aged 18 years and older who had been vaccinated with three doses inactivated COVID-19 vaccines were randomly assigned to inhale one dose of either B.1.1.529 variant Ad5 vectored COVID-19 vaccine (Ad5-nCoVO-IH group, N=150), bivalent Ad5 vectored COVID-19 vaccine (Ad5-nCoV/O-IH group, N=151), or Ad5 vectored COVID-19 vaccine (5×1010viral particles; Ad5-nCoV-IH group, N=150). Adverse reactions reported by 37 (24.67%) participants in the Ad5-nCoVO-IH group, 28 (18.54%) in the Ad5-nCoV/O-IH group, and 26 (17.33%) in the Ad5-nCoV-IH group with mainly mild to moderate dry mouth, oropharyngeal pain, headache, myalgia, cough, fever and fatigue. No serious adverse events related to the vaccine were reported. Investigational vaccines were immunogenic, with significant difference in the GMTs of neutralizing antibodies against Omicron BA.1 between Ad5-nCoV/O-IH (43.70) and Ad5-nCoV-IH (29.25) at 28 days after vaccination (P=0.0238). The seroconversion rates of neutralizing antibodies against BA.1 in Ad5-nCoVO-IH, Ad5-nCoV/O-IH, and Ad5-nCoV-IH groups were 56.00%, 59.60% and 48.67% with no significant difference among the groups. Overall, the investigational vaccines were demonstrated to be safe and well tolerated in adults, and was highly effective in inducing mucosal immunities in addition to humoral and cellular immune responses defending against SARS-CoV-2 variants.Trial registration: Chictr.org identifier: ChiCTR2200063996.


Assuntos
COVID-19 , Vacinas , Adulto , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , Vacinas Combinadas , Adenoviridae/genética , Anticorpos Neutralizantes , Imunogenicidade da Vacina , Anticorpos Antivirais
2.
Environ Sci Pollut Res Int ; 26(4): 3685-3696, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30535742

RESUMO

The presence of tetracycline antibiotics (TCS) in the water and wastewater has raised growing concern due to its potential environmental impacts; thus, their removal is of high importance. In this study, a novel aluminum-based MOF/graphite oxide (Al-MOF/GO) granule was prepared as an adsorbent for the removal of TCS including oxytetracycline (OTC) and chlortetracycline (CTC). The adsorbent was characterized via XRD, FTIR, BET, SEM, and XPS methods. The granules exhibited similar crystal structure and some new mesopores appearing compared to the parent Al-MOF/GO powder. In addition, the adsorption behavior of OTC and CTC on samples was explored as a function of initial concentration, contact time, pH, and ionic strength by means of batch experiments. The adsorption capacity reached to 224.60 and 240.13 mg·L-1 for OTC and CTC, at C0 = 60 mg·L-1 as well as ambient temperature respectively. Moreover, the adsorption process of OTC and CTC on Al-MOF/GO samples can be better delineated by pseudo-second-order kinetics and Freundlich isotherm models. Besides, the adsorption mechanism over Al-MOF/GO granules was proposed, which could be ascribed to π-π interaction, cation-π bonding, and hydrogen bond. Finally, the great water stability, separation performance, and regeneration efficiency of these novel granules indicated their potential application in the OTC and CTC removals from aqueous solution.


Assuntos
Clortetraciclina/isolamento & purificação , Estruturas Metalorgânicas/química , Oxitetraciclina/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Alumínio/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Clortetraciclina/química , Grafite/química , Ligação de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Concentração Osmolar , Oxitetraciclina/química , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Difração de Raios X
3.
Ecotoxicol Environ Saf ; 164: 289-296, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30125775

RESUMO

Tetracycline (TC) as a typical antibiotic has been used extensively and detected in soil, surface water, ground water and drinking water, which results in toxic effect and bacterial resistance. In this study, aluminum-based metal organic framework/graphite oxide (MIL-68(Al)/GO) pellets were prepared through the addition of sodium alginate (SA), a natural crosslinking agent, and applied as a novel adsorbent for aqueous TC removal. The adsorption materials were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption analysis and X-ray photoelectron spectroscopy (XPS). Results demonstrated that the pellets maintained similar chemical structure with parent MIL-68(Al)/GO powder. It is noted that the surface area and total volume of the pellets decreased obviously due to the disappearance of micropores. Besides, the efficiency of MIL-68(Al)/GO pellets for TC removal was evaluated by adsorption properties compared with parent powder, including key influential parameters, and adsorption isotherms, kinetics and mechanisms. It is found that the adsorption process was conformed to pseudo-first-order kinetics model and more suitably described through Langmuir isotherm model, with 228 mg g-1 of the maximum adsorption capacity. Moreover, these pellets which were separated easily and quickly presented high adsorption capacity and good stability in a wide pH range. The adsorption mechanism of the pellets may be ascribed to the complex interactions of hydrogen bonding, π-π stacking as well as Al-N covalent bonding. Overall, the MIL-68(Al)/GO pellets might be a promising adsorbent and show great potential for the removal of aqueous TC.


Assuntos
Antibacterianos/química , Óxidos/química , Tetraciclina/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes da Água/análise , Purificação da Água/métodos , Adsorção , Grafite/química , Água Subterrânea , Concentração de Íons de Hidrogênio , Íons , Cinética , Pós , Águas Residuárias/química , Água , Difração de Raios X
4.
J Chromatogr A ; 1362: 218-24, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25179288

RESUMO

We have previously investigated bovine serum albumin (BSA) uptake to poly(ethylenimine) (PEI)-grafted Sepharose FF. It was found that there was a critical ionic capacity (cIC; 600mmol/L) for BSA, above which the protein adsorption capacity and uptake kinetics increased drastically. In this work, two poly(ethylenimine) (PEI)-grafted resins with IC values of 271mmol/L (FF-PEI-L270) and 683mmol/L (FF-PEI-L680), which were below and above the cIC, respectively, were chosen to investigate the breakthrough and linear gradient elution (LGE) behaviors of BSA. Commercially available anion exchanger, Q Sepharose FF, was used for comparison. The DBC values of FF-PEI-L680 were much higher in the entire residence time range (2-10min) than the other two resins due to its high static adsorption capacity and uptake kinetics. At a residence time of 5.0min, the DBC of FF-PEI-L680 (104mg/mL) was about seven times that of FF-PEI-L270 and three times that of Q Sepharose FF. A rise-fall trend of the DBCs with increasing ionic strength (IS) was found for all the three resins studied, indicating the presence of electrostatic exclusion for protein uptake at low IS. With increasing NaCl concentration from 20 to 200mmol/L, FF-PEI-L680 kept very high DBC values (64-114mg/mL). In addition, FF-PEI-L270 showed more favorable adsorption properties than Q Sepharose FF at 100-300mmol/L NaCl. These results proved that the three-dimensional grafting ion exchange layer on the PEI resins enhanced their tolerance to IS. In the study of LGE, the three resins showed similar elution behaviors and no distinct peak tailings were observed. The salt concentrations at the elution peaks (IR) were in the order of FF-PEI-L680>FF-PEI-L270>Q Sepharose FF, indicating that the elution for the PEI resins needed higher salt concentrations, which was also an appearance of the salt-tolerant feature of the PEI resins. When protein loading amount was increased to the value equivalent to the DBC at 10% breakthrough, the adsorbed BSA could be eluted at lower salt concentrations. The chromatographic study has provided new insights into the practical application of the PEI-based anion exchangers.


Assuntos
Cromatografia Líquida/métodos , Polietilenoimina/química , Sefarose/química , Soroalbumina Bovina/química , Adsorção , Cinética , Concentração Osmolar , Cloreto de Sódio/química
5.
J Chromatogr A ; 1342: 30-6, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24685164

RESUMO

Previously, we studied bovine serum albumin (BSA) uptake to poly(ethylenimine) (PEI)-grafted Sepharose resins, and an ionic capacity (IC) range (600-740mmol/L) for steep increases of both protein capacity (qm) and effective pore diffusion coefficient (De) was found. In this work, seven PEI-grafted Sepharose FF resins at IC range of 270-1030mmol/L were synthesized to investigate the effect of protein properties on the adsorption and uptake kinetics using BSA and γ-globulin as two model proteins. For BSA, the change trends of qm and De values with IC were well consistent with the previous results. For γ-globulin, the qm values increased slowly till reaching a maximum value at IC=560mmol/L and then decreased rapidly at IC>560mol/L. The De values nearly kept unchanged at low ICs (IC<460mmol/L), and increased steeply at IC>460mmol/L till reaching a maximum at 680mmol/L (De/D0=0.48±0.01). After that increase, the De values for γ-globulin dropped quickly at IC>680mol/L, which was not observed for BSA. It is interesting to note that in the narrow IC range of 460-680mmol/L, the De values of γ-globulin increased dramatically for more than four folds. Moreover, it is notable that the IC range where the hopping of De values occurred for γ-globulin was earlier than that for BSA (460 vs. 560mmol/L). The earlier hopping of γ-globulin uptake rate was attributed to its larger size and less net charge, which facilitated the happenings of the "chain delivery" effect. The quick drops of both qm and De values for γ-globulin at IC>680mmol/L were considered due to its large size, which led to the significant decrease of its effective pore volume. The results indicate that both PEI layer and protein size played important roles in protein adsorption to PEI-grafted resins, and further prove the "chain delivery" effect did contributed significantly to the uptake rate hopping in the PEI-grafted resins. This work could also help the design and selection of resins based on protein characteristics and benefit optimization of practical chromatographic processes for therapeutic proteins with PEI-grafted anion exchangers.


Assuntos
Polietilenoimina/química , Sefarose/química , Soroalbumina Bovina/química , gama-Globulinas/química , Adsorção , Animais , Resinas de Troca Aniônica/química , Bovinos , Difusão , Cinética
6.
J Chromatogr A ; 1305: 85-93, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23885672

RESUMO

In Part I of this work, we have studied the effect of ionic capacity (IC) on bovine serum albumin (BSA) adsorption equilibria and kinetics to poly(ethylenimine) (PEI)-grafted Sepharose FF, and found a critical IC (cIC, 600mmol/L), above which both protein capacity and uptake rate increased drastically. In this work, five PEI-Sepharose FF resins of typical ICs reported earlier were selected to explore the effect of ionic strength (IS) on the adsorption equilibria and kinetics of BSA. Commercially available DEAE (IC=160mmol/L) and Q Sepharose FF (IC=269mmol/L) resins were used for comparisons. It is found that at similar ionic capacities, protein adsorption capacities on both the PEI-Sepharose FF resins and the commercial resins decreased with increasing IS, but on the capacity sensitivity to salt concentration, the former was lower than the latter. In addition, the effective diffusivities (De) of the former were smaller than the latter in the entire IS range studied. The low IS sensitivity of adsorption capacity of the PEI-Sepharose FF resins could be interpreted by the increase of pore accessibility with increasing IS; the smaller De values in the PEI-Sepharose FF resins were considered due to the lack of surface diffusion in the PEI-Sepharose FF resins of low PEI densities. For the PEI-Sepharose FF resins of high ICs (520, 740 and 1220mmol/L), both protein capacity and De values increased first and then decreased with increasing IS. The increasing trend of protein capacity in the low IS range was considered due to the increase of accessible pores for BSA. The rise-fall trend of De was attributed to the dependencies of the "chain delivery" effect on protein capacity and binding strength, both of which are related to IS. Moreover, the IS sensitivity of the De for the resins of ICs>cIC (740 and 1220mmol/L) was much higher than those of ICscIC. Furthermore, the two PEI-Sepharose FF resins of ICs>cIC kept high adsorption capacities and De values up to 200-300mmol/L NaCl. Therefore, the operating IS ranges for these two PEI-Sepharose FF resins can be much broader than the traditional ion-exchange media.


Assuntos
Polietilenoimina/química , Sefarose/química , Soroalbumina Bovina/química , Adsorção , Cinética , Concentração Osmolar
7.
J Chromatogr A ; 1305: 76-84, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23876766

RESUMO

To explore the details of protein uptake to polymer-grafted ion exchangers, Sepharose FF was modified with poly(ethylenimine) (PEI) to prepare anion exchanger of 10 different ionic capacities (ICs, 100-1220mmol/L). Adsorption equilibria and kinetics of bovine serum albumin (BSA) were then studied. It is found that ionic capacity, i.e., the coupling density of PEI, had significant effect on both adsorption capacity (qm) and effective protein diffusivity (De). With increasing ionic capacity, the qm value increased rapidly at IC<260mmol/L and then increased slowly till reaching a plateau at IC=600mmol/L. In the IC range of 100-600mmol/L, however, the De values kept at a low level (De/D0<0.07); it first decreased from 0.05±0.01 at IC=100mmol/L to 0.01±0.01 at IC=260mmol/L and then increased to 0.06±0.01 at IC=600mmol/L. Thereafter, sharp increases of the qm and De values [36% (from 201 to 273mg/mL) and 670% (from 0.06±0.01 to 0.49±0.04), respectively] were observed in the narrow range of IC from 600 to 740mmol/L. Finally, at IC>740mmol/L, the qm value decreased significantly while the De value increased moderately with increasing the IC. The results indicate that PEI chains played an important role in protein adsorption and transport. In brief, there was a critical IC (cIC) or PEI chain density, above which protein adsorption and transport behaviors changed drastically. The cIC was identified to be about 600mmol/L. Estimation of PEI grafting-layer thickness suggests that PEI chains formed an extended three-dimensional grafting-layer at IC>cIC, which provided high flexibility as well as accessibility of the chains for protein binding. Therefore, at IC>cIC, the adjacent PEI chains became close and flexible enough, leading to facilitated transport of adsorbed protein molecules by the interactions of neighboring chains mediated by the bound molecules. It is regarded as "chain delivery" effect. At the same time, improved accessibility of binding sites led the significant increase of binding capacity. The decrease of qm value at IC>740mmol/L is considered due to the decrease of effective porosity. The research has thus provided new insight into protein adsorption and transport in polymer-grafted ion-exchange media.


Assuntos
Polietilenoimina/química , Proteínas/química , Sefarose/química , Adsorção , Cromatografia em Gel , Íons , Cinética , Termodinâmica
8.
J Chromatogr A ; 1253: 105-9, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22818772

RESUMO

Agarose-based matrices have been widely used in ion exchange chromatography (IEC). We have herein observed that positively charged proteins (lysozyme and cytochrome c) are adsorbed on the agarose-based anion-exchangers (Q and DEAE Sepharose FF gels) in a capacity of 10-40 µg/mL. In contrast, negatively charged protein (bovine serum albumin) is not adsorbed to Sepharose FF and SP Sepharose FF gels. Elemental analysis of the gel indicated that the residual anionic sulfate groups in agarose would have worked as the cation exchange groups for the positively charged proteins. The trace adsorption behavior of lysozyme onto Sepharose FF and Sepharose FF-based anion exchangers was studied and the effects of NaCl concentration and cation group density on the adsorption were examined for better understanding of the trace adsorption in chromatographic processes. At NaCl concentrations less than 0.05 mol/L, which is the normal adsorption condition in IEC, the trace adsorption kept at a high level, so this trace adsorption cannot be avoided in the ionic strength range of routine IEC operations. Grafting poly(ethylenimine) (PEI) chain of 60 kDa to a cation group density of 700 mmol/L could reduce the adsorption capacity to about 20 µg/mL, but further reduction was not possible by increasing the cation group density to 1200 mmol/L. Therefore, attentions need to be paid to the phenomenon in protein purification practice using agarose-based matrices. The research is expected to call attentions to the trace adsorption on agarose-based matrices and to the importance in the selection of the suitable solid matrices in the production of high-purity protein products in large-scale bioprocesses.


Assuntos
Resinas de Troca Aniônica/química , Cromatografia por Troca Iônica/métodos , Proteínas/química , Sefarose/química , Adsorção , Animais , Bovinos , Galinhas , Cavalos , Proteínas/metabolismo , Sefarose/metabolismo , Cloreto de Sódio/química
9.
J Chromatogr A ; 1225: 168-73, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22236562

RESUMO

We have previously found that addition of charged particles in a refolding solution can greatly increase the refolding yield of like-charged proteins. Herein, porous anion exchangers of different charged group densities, ligand chemistries, pore sizes and particle sizes were prepared with Sepharose FF gel for studying their effects on the oxidative refolding of like-charged lysozyme. We found that charge density had significant contribution to the enhancing effects on lysozyme refolding. At low resin concentration range (<0.04-0.1g/mL), the refolding yield increased with increasing charged group density and resin concentration. The yield then reached a plateau at a critical resin concentration; the higher the charge density, the lower the critical resin concentration. This implies that gel particles of higher charge density were favorable to offer higher refolding yield at lower added concentrations. In the gel concentration range in which refolding yield has reached plateau, there existed an optimum charge density that gave the highest refolding yield. It was attributed to the electrostatic repulsion effect of the charged groups on the like-charged protein, which reduced the accessible pore volume for the protein. At the same charge density, the refolding yield was independent of ligand chemistry, but a polyelectrolyte group of higher molecular weight was more suitable for grafting the gel to prepare matrices of high charge density. The resins of smaller size exhibited better facilitating effect, and the microporous resin was better than that with superpores. The research is expected to help design more effective charged materials for facilitating protein refolding.


Assuntos
Resinas de Troca Iônica/química , Redobramento de Proteína , Proteínas/química , Peso Molecular , Oxirredução , Tamanho da Partícula , Porosidade , Proteínas/metabolismo , Sefarose/análogos & derivados , Sefarose/química , Eletricidade Estática
10.
J Sep Sci ; 34(21): 2950-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21953979

RESUMO

In the current research, a series of dextran-grafted adsorbents were prepared using sulfopropyl and 4-(1H-imidazol-1-yl) aniline as chromatographic ligands for ion-exchange (IEC) and mixed-mode chromatography (MMC) to respectively investigate the influence of dextran layer on adsorption of γ-globulin. Experimental evidences of static adsorption on dextran-grafted IEC adsorbents showed that adsorption capacity of γ-globulin increased with dextran content. It could be attributed to the multilayer adsorption of charged protein in dextran layer and thus further induced a significant electrical potential gradient at the boundary of adsorbed area and its proximity, improving mass transfer in combination with concentration gradient. In contrast to IEC adsorbents, adsorption capacity and effective diffusivity of dextran-grafted MMC adsorbents did not change obviously with dextran grafting. It was considered that hydrophobic ligands immobilized onto dextran-grafted MMC adsorbents were stuck together at pH 8.0, resulting in the collapse of dextran layer. In concert with measured effective porosity for γ-globulin at pH 4.0, it was confirmed that dextran layer in MMC adsorbent was more complicated and influenced significantly by buffer pH. It was also manifested by protein adsorption at different pHs. Thus, it revealed the complexity in intraparticle mass transfer of the protein in dextran-grafted MMC adsorbent.


Assuntos
Compostos de Anilina/química , Dextranos/química , gama-Globulinas/química , Adsorção , Compostos de Anilina/síntese química , Cromatografia por Troca Iônica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...