Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 42(6): 921-931, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32839503

RESUMO

The neonatal heart possesses the ability to proliferate and the capacity to regenerate after injury; however, the mechanisms underlying these processes are not fully understood. Melatonin has been shown to protect the heart against myocardial injury through mitigating oxidative stress, reducing apoptosis, inhibiting mitochondrial fission, etc. In this study, we investigated whether melatonin regulated cardiomyocyte proliferation and promoted cardiac repair in mice with myocardial infarction (MI), which was induced by ligation of the left anterior descending coronary artery. We showed that melatonin administration significantly improved the cardiac functions accompanied by markedly enhanced cardiomyocyte proliferation in MI mice. In neonatal mouse cardiomyocytes, treatment with melatonin (1 µM) greatly suppressed miR-143-3p levels. Silencing of miR-143-3p stimulated cardiomyocytes to re-enter the cell cycle. On the contrary, overexpression of miR-143-3p inhibited the mitosis of cardiomyocytes and abrogated cardiomyocyte mitosis induced by exposure to melatonin. Moreover, Yap and Ctnnd1 were identified as the target genes of miR-143-3p. In cardiomyocytes, inhibition of miR-143-3p increased the protein expression of Yap and Ctnnd1. Melatonin treatment also enhanced Yap and Ctnnd1 protein levels. Furthermore, Yap siRNA and Ctnnd1 siRNA attenuated melatonin-induced cell cycle re-entry of cardiomyocytes. We showed that the effect of melatonin on cardiomyocyte proliferation and cardiac regeneration was impeded by the melatonin receptor inhibitor luzindole. Silencing miR-143-3p abrogated the inhibition of luzindole on cardiomyocyte proliferation. In addition, both MT1 and MT2 siRNA could cancel the beneficial effects of melatonin on cardiomyocyte proliferation. Collectively, the results suggest that melatonin induces cardiomyocyte proliferation and heart regeneration after MI by regulating the miR-143-3p/Yap/Ctnnd1 signaling pathway, providing a new therapeutic strategy for cardiac regeneration.


Assuntos
Proliferação de Células/efeitos dos fármacos , Melatonina/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Recém-Nascidos , Cateninas/metabolismo , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Coração/efeitos dos fármacos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , Regeneração/efeitos dos fármacos , Proteínas de Sinalização YAP , delta Catenina
2.
ACS Nano ; 15(1): 1497-1508, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33372769

RESUMO

Optoelectronic synapses integrating synaptic and optical-sensing functions exhibit large advantages in neuromorphic computing for visual information processing and complex learning, recognition, and memory in an energy-efficient way. However, electric stimulation is still essential for existing optoelectronic synapses to realize bidirectional weight-updating, restricting the processing speed, bandwidth, and integration density of the devices. Herein, a two-terminal optical synapse based on a wafer-scale pyrenyl graphdiyne/graphene/PbS quantum dot heterostructure is proposed that can emulate both the excitatory and inhibitory synaptic behaviors in an optical pathway. The simple device architecture and low-dimensional features of the heterostructure endow the optical synapse with robust flexibility for wearable electronics. This optical synapse features a linear and symmetric conductance-update trajectory with numerous conductance states and low noise, which facilitates the demonstration of accurate and effective pattern recognition with a strong fault-tolerant capability even at bending states. A series of logic functions and associative learning capabilities have been demonstrated by the optical synapses in optical pathways, significantly enhancing the information processing capability for neuromorphic computing. Moreover, an integrated visible information sensing memory processing system based on the optical synapse array is constructed to perform real-time detection, in situ image memorization, and distinction tasks. This work is an important step toward the development of optogenetics-inspired neuromorphic computing and adaptive parallel processing networks for wearable electronics.

3.
ACS Appl Mater Interfaces ; 12(29): 33069-33075, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32589388

RESUMO

Graphdiyne is a new two-dimensional carbon allotrope with many attractive properties and has been widely used in various applications. However, the synthesis of large-area, high-quality, and ultrathin (especially monolayer) graphdiyne and its analogues remains a challenge, hindering its application in optoelectronic devices. Here, a wafer-scale monolayer pyrenyl graphdiyne (Pyr-GDY) film is obtained on hexagonal boron nitride (hBN) via a van der Waals epitaxial strategy, and top-floating-gated multibit nonvolatile optoelectronic memory based on Pyr-GDY/hBN/graphene is constructed, using Pyr-GDY as a photoresponsive top-floating gate. Benefiting from the excellent charge trapping capability and strong absorption of the graphdiyne film, as well as the top-floating-gated structure and the ultrathin hBN film used in the device, the optoelectronic memory exhibits high storage performance and robust reliability. A huge difference in the current between the programmed and erased states (>26 µA µm-1 at Vds = 0.1 V) and a prolonged retention time (>105 s) enable the device to achieve multibit storage, for which eight and nine distinct storage levels (3-bit) are obtained by applying periodic gate voltages and optical pulses in the programming and erasing processes, respectively. This work provides an important step toward realizing versatile graphdiyne-based optoelectronic devices in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...