Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 32(7): 2371-2377, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34313054

RESUMO

We analyzed the effects of meteorological factors and soil properties on vertical variation of SOC, based on soil organic carbon (SOC) density in different soil layers (0-10, 10-20, 20-30, 30-50, and 50-100 cm) from 131 mature natural forests in different climate zones in China. The results showed that SOC density decreased with increasing soil depth (0-30 cm) in temperate coniferous, temperate deciduous broadleaved, subtropical deciduous broadleaved and subtropical evergreen broadleaved forests. There were significant regional variations of SOC density in 0-100 cm soil layer. SOC density of 0-100 cm soil layer in temperate coniferous forests was higher than temperate deciduous broadleaved forests, and was higher in subtropical evergreen broadleaved forests than subtropical deciduous broadleaved forests. SOC density was significantly positively correlated with soil clay content, mean annual precipitation, and aboveground net primary production, and significantly negatively correlated with soil pH and mean annual temperature. Mean annual precipitation and mean annual temperature influenced input and output of SOC, while soil pH and clay content affected SOC accumulation. Therefore, protecting mature natural coniferous and evergreen broadleaved forests would benefit forest carbon sequestration in China.


Assuntos
Carbono , Solo , Carbono/análise , Sequestro de Carbono , China , Florestas
2.
Ying Yong Sheng Tai Xue Bao ; 32(4): 1213-1220, 2021 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-33899389

RESUMO

Based on a long-term simulated acid rain experiment, soil N2O emission fluxes were measured using static chambers and the gas chromatography method in a coniferous and broadleaved mixed forest and a monsoon evergreen broadleaved forest in southern China. During the five-year observation periods (2014-2018), soil N2O emission fluxes in the two forests showed obvious seasonal variation. The soil N2O emission fluxes in wet season were significantly higher than that in dry season, with a large annual variation. Due to the decreases of precipitation, soil N2O emission fluxes of the two forests in 2017 and 2018 were generally low. Soil N2O emission flux was positively correlated with soil temperature and soil moisture. In the monsoon evergreen broadleaved forest, soil N2O emission flux in the control plot was 12.6 µg N2O·m-2·h-1. Soil N2O emission fluxes under the pH 3.5 and pH 3.0 treatments increased by 42.9% and 61.1%, respectively. Soil N2O emission was significantly increased under simulated acid rain in the monsoon evergreen broadleaved forest. Acid rain promoted soil N2O emission in the coniferous and broadleaved mixed forest, but without significant difference among the treatments. Under the scenario of increasing acid rain, soil N2O emission fluxes in typical subtropical southern China forests would increase, and the magnitude of such increase was different among forest types.


Assuntos
Chuva Ácida , Solo , China , Florestas , Óxido Nitroso/análise
3.
Biomaterials ; 30(29): 5592-600, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19564039

RESUMO

Rare-earth up-converting nanophosphors (UCNPs) have great potential to become a new generation of biological luminescent labels, but their use has been limited by difficulties in obtaining water-soluble UCNPs bearing appropriate functional groups. To address this problem, we report herein a simple and efficient procedure for the preparation of amine-functionalized UCNPs by a modified hydrothermal microemulsion route assisted with 6-aminohexanoic acid. The amine content of the resultant UCNPs has been determined to be (9.5+/-0.8) x 10(-5) mol/g, which not only confers excellent dispersibility in aqueous solution, but also allows further conjugation with targeted molecules such as folic acid (FA) as a ligand. By means of the laser scanning up-conversion luminescence microscopy (LSUCLM) and the in vivo up-conversion luminescence (UCL) imaging under excitation at the CW infrared laser at 980 nm, FA-coupled UCNPs have been demonstrated to be effective in targeting folate-receptor overexpressing HeLa cells in vitro and HeLa tumor in vivo and ex vivo. These results indicated that our UCNPs could be used as whole-body targeted UCL imaging agents.


Assuntos
Meios de Contraste/síntese química , Medições Luminescentes/métodos , Metais Terras Raras/química , Microscopia de Fluorescência/métodos , Nanoestruturas/química , Aminas/química , Emulsões/química , Células HeLa , Humanos , Nanoestruturas/ultraestrutura , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA