Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(6): 3734-3745, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897793

RESUMO

The urban thermal environment is an important indicator for evaluating the ecological environment of a city. It directly affects the health of residents and the sustainable development of the urban economy. However, there is currently a lack of analysis on the impact pathways of the thermal environment considering both natural and human factors. Based on the MODIS MYD11A2 land surface temperature data, meteorological data, and human activity data of Xi'an metropolitan area in 2020, ArcGIS spatial geostatistical analysis was used to study the temporal and spatial distribution pattern of the thermal environment in different seasons, and redundancy analysis was utilized to select the main factors affecting the thermal environment. Then, structural equation modeling was used to quantify the direct and indirect effects of the dominant factors on the urban thermal environment. The results showed that:① The surface temperature in the Xi'an urban area showed a spatial pattern of higher temperatures in the north and lower temperatures in the south, with a decrease in temperature from the city center to the surrounding areas. The most severe heat environment pollution occurred in the summer. ② The redundancy analysis (RDA) results indicated that the main factors that affected the thermal environment were air temperature, impermeable surfaces, vegetation, and precipitation. ③ The results of the structural equation modeling (SEM) indicated that meteorological, surface, and anthropogenic factors affected the urban thermal environment mainly through direct pathways, which were much more important than all indirect pathways. Factors such as temperature, impervious surfaces, and point of interest density had a significant positive effect on the thermal environment (0.10 and 0.33). On the other hand, factors such as water bodies, precipitation, and vegetation had a significant negative effect on the thermal environment (-0.29 and -0.25). Human activities had a greater direct impact on nocturnal surface temperatures than surface and meteorological factors. Increasing economic efficiency is beneficial for mitigating the urban heat island effect. The results of the study can provide a reference for studying local climate change in urban heat islands and for the construction of green and ecologically livable urban environments.

2.
Sci Total Environ ; 892: 164496, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257592

RESUMO

COVID-19 has notably impacted the world economy and human activities. However, the strict urban lockdown policies implemented in various countries appear to have positively affected pollution and the thermal environment. In this study, Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) and aerosol optical depth (AOD) data were selected, combined with Sentinel-5P images and meteorological elements, to analyze the changes and associations among air pollution, LST, and urban heat islands (UHIs) in three urban agglomerations in mainland China during the COVID-19 lockdown. The results showed that during the COVID-19 lockdown period (February 2020), the levels of the AOD and atmospheric pollutants (fine particles (PM2.5), NO2, and CO) significantly decreased. Among them, PM2.5 and NO2 decreased the most in all urban agglomerations, by >14 %. Notably, the continued improvement in air pollution attributed to China's strict control policies could lead to overestimation of the enhanced air quality during the lockdown. The surface temperature in all three urban agglomerations increased by >1 °C during the lockdown, which was mainly due to climate factors, but we also showed that the lockdown constrained positive LST anomalies. The decrease in the nighttime urban heat island intensity (UHIInight) in the three urban agglomerations was greater than that in the daytime quantity by >25 %. The reduction in surface UHIs at night was mainly due to the reduced human activities and air pollutant emissions. Although strict restrictions on human activities positively affected air pollution and UHIs, these changes were quickly reverted when lockdown policies were relaxed. Moreover, small-scale lockdowns contributed little to environmental improvement. Our results have implications for assessing the environmental benefits of city-scale lockdowns.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Controle de Doenças Transmissíveis , COVID-19/epidemiologia , Monitoramento Ambiental , Temperatura Alta , Dióxido de Nitrogênio , Material Particulado/análise , Aerossóis e Gotículas Respiratórios , Temperatura , Quarentena
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA