Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(30): e2302707, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37661570

RESUMO

2D materials have manifested themselves as key components toward compact integrated circuits. Because of their capability to circumvent the diffraction limit, light manipulation using surface plasmon polaritons (SPPs) is highly-valued. In this study, plasmonic photodetection using graphene as a 2D material is investigated. Non-scattering near-field detection of SPPs is implemented via monolayer graphene stacked under an SPP waveguide with a symmetric antenna. Energy conversion between radiation power and electrical signals is utilized for the photovoltaic and photoconductive processes of the gold-graphene interface and biased electrodes, measuring a maximum photoresponsivity of 29.2 mA W-1 . The generated photocurrent is altered under the polarization state of the input light, producing a 400% contrast between the maximum and minimum signals. This result is universally applicable to all on-chip optoelectronic circuits.

2.
ACS Appl Mater Interfaces ; 14(26): 30299-30305, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35675390

RESUMO

Recently, nanoscale light manipulation using surface plasmon polaritons (SPPs) has received considerable research attention. The conventional method of detecting SPPs is through light scattering or using bulky Si or Ge photodetectors. However, these bulky systems limit the application of nanophotonic circuits. In this study, the light-matter interaction between graphene and SPP was investigated. For realizing an improved integration in nanocircuits, single-layer graphene was added to asymmetric SPP nanoantenna arrays for nonscattering detection in the near field. The developed device is capable of detecting the controlled propagation of SPPs with a photoresponsivity of 15 mA/W, which paves the way for the new-generation on-chip optical communication.

3.
ACS Nano ; 16(4): 5994-6001, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35191683

RESUMO

In O-and C-band optical communications, Ge is a promising material for detecting optical signals that are encoded into electrical signals. Herein, we study 2D periodic Ge metasurfaces that support optically induced electric dipole and magnetic dipole lattice resonances. By overlapping Mie resonances and electric dipole lattice resonances, we realize the resonant lattice Kerker effect and achieve narrowband absorption. This effect was applied to the photodetector demonstrated in this study. The absorptance of the Ge nanoantenna arrays increased 6-fold compared to that of the unpatterned Ge films. In addition, the photocurrent in such Ge metasurface photodetectors increases by approximately 5 times compared with that in plane Ge film photodetectors by the interaction of these strong near-fields with semiconductors and the further transformation of the optical energy into electricity.

4.
ACS Appl Mater Interfaces ; 12(50): 56562-56567, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33259198

RESUMO

Optically excited hot carriers from metallic nanostructures forming metal-semiconductor heterostructures are advantageous for enhancing photoelectric conversion in the sub-band gap photon energy regime. Plasmonic gold has been widely used for hot carrier excitation, but recent works have demonstrated that plasmonic transition-metal nitrides have higher efficiencies in injecting hot electrons to adjacent n-type semiconductors and are more cost-effective. To collect direct evidence of hot carrier excitation from nanostructures, imaging of hot carriers is essential. In this work, photoexcited Kelvin probe force microscopy (KPFM) is used to image hot carriers excited in transition-metal nitride nanostructures forming heterostructures with semiconductors. Among available transition-metal nitrides, we select zirconium nitride (ZrN) for this study. Additionally, both p-type and n-type titanium dioxides (TiO2) are selected to study the transport of hot holes and hot electrons. The KPFM results indicate that for ZrN and p-type TiO2 heterostructures, hot holes are injected into the p-type TiO2 across the Schottky contact. In the case of ZrN and n-type TiO2 heterostructures, hot electrons are injected into the n-type TiO2 across the ohmic contact. Because transition-metal nitrides are known to be more effective than gold at injecting hot carriers into adjacent semiconductors, unambiguously determining the mechanisms of hot carrier transportation of transition-metal nitrides using photoexcited KPFM will facilitate additional studies on hot carrier applications with transition-metal nitrides.

5.
ACS Appl Mater Interfaces ; 12(28): 31327-31339, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32470288

RESUMO

The release of untreated industrial wastewater creates a hazardous impact on the environment. In this regard, the development of an environmentally friendly catalyst is of paramount importance. Here, we report a highly efficient and reusable core-shell TiN/SiO2/Cr-TiO2 (TSCT) photocatalyst that is composed of SiO2-cladded titanium nitride (TiN) nanoparticles (NPs) decorated with Cr-doped TiO2 NPs for the removal of organic contaminants from water. The TiN NPs serve as the main light absorber component with excellent visible-light absorption along with Cr-TiO2 NPs. The TSCT shows remarkable improvement in the photodecomposition of methylene blue (MB) over Cr-TiO2 and TiO2 NPs. An efficient structural design is proposed by adopting calcium alginate beads (P-Marimo beads) as a transparent scaffold for supporting our TSCT, which floats nature on the water surface and realizes easy handling as well as excellent reusability for multipurpose water purification. Surprisingly, our TSCT is found to keep its catalytic activity even after the illumination is turned off. Our proposed P-Marimo-encapsulated TSCT can be utilized as an excellent green photocatalyst with high photocatalytic performance, good recyclability, and easy handling.

6.
ACS Nano ; 14(5): 5678-5685, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32298575

RESUMO

Artificial color pixels based on dielectric Mie resonators are appealing for scientific research as well as practical design. Vivid colors are imperative for displays and imaging. Dielectric metasurface-based artificial pixels are promising candidates for developing flat, flexible, and/or wearable displays. Considering the application feasibility of artificial color pixels, wide color gamuts are crucial for contemporary display technology. To achieve a wide color gamut, ensuring the purity and efficiency of nanostructure resonance peaks in the visible spectrum is necessary for structural color design. Low-loss dielectric materials are suitable for achieving vivid colors with structural color pixels. However, high-order Mie resonances prevent color pixels based on dielectric metasurfaces from efficiently generating highly saturated colors. In particular, fundamental Mie resonances (electric/magnetic dipole) for red can result in not only a strong resonance peak at 650 nm but also high-order Mie resonances at shorter wavelengths, which reduces the saturation of the target color. To address these problems, we fabricated silicon nitride metasurfaces on quartz substrates and applied Rayleigh anomalies at relatively short wavelengths to successfully suppress high-order Mie resonances, thus creating vivid color pixels. We performed numerical design, semianalytic considerations, and experimental proof-of-concept examinations to demonstrate the performance of the silicon nitride metasurfaces. Apart from traditional metasurface designs that involve transmission and reflection modes, we determined that lateral light incidence on silicon nitride metasurfaces can provide vivid colors through long-range dipole interactions; this can thus extend the applications of such surfaces to eyewear displays and guided-wave illumination techniques.

7.
Sci Rep ; 9(1): 11778, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409844

RESUMO

The near-field coupling between a high-refractive-index nanoparticle and gold nanoantennas is investigated theoretically. The absorption enhancement and also avoided resonance crossing in the absorption cross section spectra were observed with the hybridization system due to the coupling between the localized surface plasmon resonance of the gold nanoantennas and the magnetic dipole resonance of the silicon nanoparticle. By controlling the nanoparticle size or the separation distance, the near-field coupling can be tuned from the weak to the strong regime.

8.
Nano Lett ; 19(8): 5017-5024, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31268338

RESUMO

Graphene is a two-dimensional (2D) structure that creates a linear relationship between energy and momentum that not only forms massless Dirac fermions with extremely high group velocity but also exhibits a broadband transmission from 300 to 2500 nm that can be applied to many optoelectronic applications, such as solar cells, light-emitting devices, touchscreens, ultrafast photodetectors, and lasers. Although the plasmonic resonance of graphene occurs in the terahertz band, graphene can be combined with a noble metal to provide a versatile platform for supporting surface plasmon waves. In this study, we propose a hybrid graphene-insulator-metal (GIM) structure that can modulate the surface plasmon polariton (SPP) dispersion characteristics and thus influence the performance of plasmonic nanolasers. Compared with values obtained when graphene is not used on an Al template, the propagation length of SPP waves can be increased 2-fold, and the threshold of nanolasers is reduced by 50% when graphene is incorporated on the template. The GIM structure can be further applied in the future to realize electrical control or electrical injection of plasmonic devices through graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...