Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 816959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685285

RESUMO

Water permeability of the kidney collecting ducts is regulated in part by the amount of the molecular water channel protein aquaporin-2 (AQP2), whose expression, in turn, is regulated by the pituitary peptide hormone vasopressin. We previously showed that stable glucocorticoid receptor knockdown diminished the vasopressin-induced Aqp2 gene expression in the collecting duct cell model mpkCCD. Here, we investigated the pathways regulated by the glucocorticoid receptor by comparing transcriptomes of the mpkCCD cells with or without stable glucocorticoid receptor knockdown. Glucocorticoid receptor knockdown downregulated 5,394 transcripts associated with 55 KEGG pathways including "vasopressin-regulated water reabsorption," indicative of positive regulatory roles of these pathways in the vasopressin-induced Aqp2 gene expression. Quantitative RT-PCR confirmed the downregulation of the vasopressin V2 receptor transcript upon glucocorticoid receptor knockdown. Glucocorticoid receptor knockdown upregulated 3,785 transcripts associated with 42 KEGG pathways including the "TNF signaling pathway" and "TGFß signaling pathway," suggesting the negative regulatory roles of these pathways in the vasopressin-induced Aqp2 gene expression. Quantitative RT-PCR confirmed the upregulation of TNF and TGFß receptor transcripts upon glucocorticoid receptor knockdown. TNF or TGFß inhibitor alone, in the absence of vasopressin, did not induce Aqp2 gene transcription. However, TNF or TGFß blunted the vasopressin-induced Aqp2 gene expression. In particular, TGFß reduced vasopressin-induced increases in Akt phosphorylation without inducing epithelial-to-mesenchymal transition or interfering with vasopressin-induced apical AQP2 trafficking. In summary, our RNA-seq transcriptomic comparison revealed positive and negative regulatory pathways maintained by the glucocorticoid receptor for the vasopressin-induced Aqp2 gene expression.

2.
J Virol ; 96(7): e0010722, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293767

RESUMO

The propagation of the hepatitis C virus (HCV) is regulated in part by the phosphorylation of its nonstructural protein NS5A that undergoes sequential phosphorylation on several highly conserved serine residues and switches from a hypo- to a hyperphosphorylated state. Previous studies have shown that NS5A sequential phosphorylation requires NS3 encoded on the same NS3-NS4A-NS4B-NS5A polyprotein. Subtle mutations in NS3 without affecting its protease activity could affect NS5A phosphorylation. Given the ATPase domain in the NS3 COOH terminus, we tested whether NS3 participates in NS5A phosphorylation similarly to the nucleoside diphosphate kinase-like activity of the rotavirus NSP2 nucleoside triphosphatase (NTPase). Mutations in the NS3 ATP-binding motifs blunted NS5A hyperphosphorylation and phosphorylation at serines 225, 232, and 235, whereas a mutation in the RNA-binding domain did not. The phosphorylation events were not rescued with wild-type NS3 provided in trans. When provided with an NS3 ATPase-compatible ATP analog, N6-benzyl-ATP-γ-S, thiophosphorylated NS5A was detected in the cells expressing the wild-type NS3-NS5B polyprotein. The thiophosphorylation level was lower in the cells expressing NS3-NS5B with a mutation in the NS3 ATP-binding domain. In vitro assays with a synthetic peptide and purified wild-type NS3 followed by dot blotting and mass spectrometry found weak NS5A phosphorylation at serines 222 and 225 that was sensitive to an inhibitor of casein kinase Iα but not helicase. When casein kinase Iα was included in the assay, much stronger phosphorylation was observed at serines 225, 232, and 235. We concluded that NS5A sequential phosphorylation requires the ATP-binding domain of the NS3 helicase and that casein kinase Iα is a potent NS5A kinase. IMPORTANCE For more than 20 years, NS3 was known to participate in NS5A sequential phosphorylation. In the present study, we show for the first time that the ATP-binding domain of NS3 is involved in NS5A phosphorylation. In vitro assays showed that casein kinase Iα is a very potent kinase responsible for NS5A phosphorylation at serines 225, 232, and 235. Our data suggest that ATP binding by NS3 probably results in conformational changes that recruit casein kinase Iα to phosphorylate NS5A, initially at S225 and subsequently at S232 and S235. Our discovery reveals intricate requirements of the structural integrity of NS3 for NS5A hyperphosphorylation and HCV replication.


Assuntos
Hepacivirus , Hepatite C , RNA Polimerase Dependente de RNA , Proteínas não Estruturais Virais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Caseína Quinase Ialfa/metabolismo , Hepacivirus/enzimologia , Hepacivirus/genética , Hepatite C/virologia , Humanos , Fosforilação , Poliproteínas/metabolismo , Domínios Proteicos/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
3.
Front Physiol ; 12: 725172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925053

RESUMO

Water permeability of the kidney collecting ducts is regulated by the peptide hormone vasopressin. Between minutes and hours (short-term), vasopressin induces trafficking of the water channel protein aquaporin-2 to the apical plasma membrane of the collecting duct principal cells to increase water permeability. Between hours and days (long-term), vasopressin induces aquaporin-2 gene expression. Here, we investigated the mechanisms that bridge the short-term and long-term vasopressin-mediated aquaporin-2 regulation by α-actinin 4, an F-actin crosslinking protein and a transcription co-activator of the glucocorticoid receptor. Vasopressin induced F-actin depolymerization and α-actinin 4 nuclear translocation in the mpkCCD collecting duct cell model. Co-immunoprecipitation followed by immunoblotting showed increased interaction between α-actinin 4 and glucocorticoid receptor in response to vasopressin. ChIP-PCR showed results consistent with α-actinin 4 and glucocorticoid receptor binding to the aquaporin-2 promoter. α-actinin 4 knockdown reduced vasopressin-induced increases in aquaporin-2 mRNA and protein expression. α-actinin 4 knockdown did not affect vasopressin-induced glucocorticoid receptor nuclear translocation, suggesting independent mechanisms of vasopressin-induced nuclear translocation of α-actinin 4 and glucocorticoid receptor. Glucocorticoid receptor knockdown profoundly reduced vasopressin-induced increases in aquaporin-2 mRNA and protein expression. In the absence of glucocorticoid analog dexamethasone, vasopressin-induced increases in glucocorticoid receptor nuclear translocation and aquaporin-2 mRNA were greatly reduced. α-actinin 4 knockdown further reduced vasopressin-induced increase in aquaporin-2 mRNA in the absence of dexamethasone. We conclude that glucocorticoid receptor plays a major role in vasopressin-induced aquaporin-2 gene expression that can be enhanced by α-actinin 4. In the absence of vasopressin, α-actinin 4 crosslinks F-actin underneath the apical plasma membrane, impeding aquaporin-2 membrane insertion. Vasopressin-induced F-actin depolymerization in one hand facilitates aquaporin-2 apical membrane insertion and in the other hand frees α-actinin 4 to enter the nucleus where it binds glucocorticoid receptor to enhance aquaporin-2 gene expression.

4.
Am J Physiol Renal Physiol ; 319(4): F592-F602, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32799672

RESUMO

Aquaporin-2 (AQP2) is a vasopressin-regulated water channel protein responsible for water reabsorption by the kidney collecting ducts. Under control conditions, most AQP2 resides in the recycling endosomes of principal cells, where it answers to vasopressin with trafficking to the apical plasma membrane to increase water reabsorption. Upon vasopressin withdrawal, apical AQP2 retreats to the early endosomes before joining the recycling endosomes for the next vasopressin stimulation. Prior studies have demonstrated a role of AQP2 S269 phosphorylation in reducing AQP2 endocytosis, thereby prolonging apical AQP2 retention. Here, we studied where in the cells S269 was phosphorylated and dephosphorylated in response to vasopressin versus withdrawal. In mpkCCD collecting cells, vacuolar protein sorting 35 knockdown slowed vasopressin-induced apical AQP2 trafficking, resulting in AQP2 accumulation in the recycling endosomes where S269 was phosphorylated. Rab7 knockdown, which impaired AQP2 trafficking from the early to recycling endosomes, reduced vasopressin-induced S269 phosphorylation. Rab5 knockdown, which impaired AQP2 endocytosis, did not affect vasopressin-induced S269 phosphorylation. Upon vasopressin withdrawal, S269 was not dephosphorylated in Rab5 knockdown cells. In contrast, S269 dephosphorylation upon vasopressin withdrawal was completed in Rab7 or vacuolar protein sorting 35 knockdown cells. We conclude that S269 is dephosphorylated during Rab5-mediated AQP2 endocytosis before AQP2 joins the recycling endosomes upon vasopressin withdrawal. While in the recycling endosomes, AQP2 can be phosphorylated at S269 in response to vasopressin before apical trafficking.


Assuntos
Aquaporina 2/metabolismo , Endocitose , Endossomos/metabolismo , Túbulos Renais Coletores/metabolismo , Animais , Linhagem Celular , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/efeitos dos fármacos , Camundongos , Fosforilação , Transporte Proteico , Serina , Vasopressinas/farmacologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
5.
J Virol ; 94(19)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32699091

RESUMO

Replication of the genotype 2 hepatitis C virus (HCV) requires hyperphosphorylation of the nonstructural protein NS5A. It has been known that NS5A hyperphosphorylation results from the phosphorylation of a cluster of highly conserved serine residues (S2201, S2208, S2211, and S2214) in a sequential manner. It has also been known that NS5A hyperphosphorylation requires an NS3 protease encoded on one single NS3-5A polyprotein. It was unknown whether NS3 protease participates in this sequential phosphorylation process. Using an inventory of antibodies specific to S2201, S2208, S2211, and S2214 phosphorylation, we found that protease-dead S1169A mutation abrogated NS5A hyperphosphorylation and phosphorylation at all serine residues measured, consistent with the role of NS3 in NS5A sequential phosphorylation. These effects were not rescued by a wild-type NS3 protease provided in trans by another molecule. Mutations (T1661R, T1661Y, or T1661D) that prohibited proper cleavage at the NS3-4A junction also abolished NS5A hyperphosphorylation and phosphorylation at all serine residues, whereas mutations at the other cleavage sites, NS4A-4B (C1715S) or NS4B-5A (C1976F), did not. In fact, any combinatory mutations that prohibited NS3-4A cleavage (T1661Y/C1715S or T1661Y/C1976F) abrogated NS5A hyperphosphorylation and phosphorylation at all serine residues. In the C1715S/C1976F double mutant, which resulted in an NS4A-NS4B-NS5A fusion polyprotein, a hyperphosphorylated band was observed and was phosphorylated at all serine residues. We conclude that NS3-mediated autocleavage at the NS3-4A junction is critical to NS5A hyperphosphorylation at S2201, S2208, S2211, and S2214 and that NS5A hyperphosphorylation could occur in an NS4A-NS4B-NS5A polyprotein.IMPORTANCE For ca. 20 years, the HCV protease NS3 has been implicated in NS5A hyperphosphorylation. We now show that it is the NS3-mediated cis cleavage at the NS3-4A junction that permits NS5A phosphorylation at serines 2201, 2208, 2211, and 2214, leading to hyperphosphorylation, which is a necessary condition for genotype 2 HCV replication. We further show that NS5A may already be phosphorylated at these serine residues right after NS3-4A cleavage and before NS5A is released from the NS4A-5A polyprotein. Our data suggest that the dual-functional NS3, a protease and an ATP-binding RNA helicase, could have a direct or indirect role in NS5A hyperphosphorylation.


Assuntos
Hepacivirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Mutação , Fosforilação , Poliproteínas/metabolismo , RNA Helicases
6.
Am J Physiol Renal Physiol ; 318(4): F956-F970, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088968

RESUMO

Aquaporin-2 (AQP2) is a vasopressin-regulated water channel protein responsible for osmotic water reabsorption by kidney collecting ducts. In response to vasopressin, AQP2 traffics from intracellular vesicles to the apical plasma membrane of collecting duct principal cells, where it increases water permeability and, hence, water reabsorption. Despite continuing efforts, gaps remain in our knowledge of vasopressin-regulated AQP2 trafficking. Here, we studied the functions of two retromer complex proteins, small GTPase Rab7 and vacuolar protein sorting 35 (Vps35), in vasopressin-induced AQP2 trafficking in a collecting duct cell model (mpkCCD cells). We showed that upon vasopressin removal, apical AQP2 returned to Rab5-positive early endosomes before joining Rab11-positive recycling endosomes. In response to vasopressin, Rab11-associated AQP2 trafficked to the apical plasma membrane before Rab5-associated AQP2 did so. Rab7 knockdown resulted in AQP2 accumulation in early endosomes and impaired vasopressin-induced apical AQP2 trafficking. In response to vasopressin, Rab7 transiently colocalized with Rab5, indicative of a role of Rab7 in AQP2 sorting in early endosomes before trafficking to the apical membrane. Rab7-mediated apical AQP2 trafficking in response to vasopressin required GTPase activity. When Vps35 was knocked down, AQP2 accumulated in recycling endosomes under vehicle conditions and did not traffic to the apical plasma membrane in response to vasopressin. We conclude that Rab7 and Vps35 participate in AQP2 sorting in early endosomes under vehicle conditions and apical membrane trafficking in response to vasopressin.


Assuntos
Aquaporina 2/metabolismo , Endossomos/enzimologia , Túbulos Renais Coletores/enzimologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Aquaporina 2/genética , Endossomos/efeitos dos fármacos , Células HEK293 , Humanos , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/efeitos dos fármacos , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Transporte Proteico , Proteólise , Fatores de Tempo , Vasopressinas/farmacologia , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
7.
Front Physiol ; 10: 1308, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681015

RESUMO

Aquaporin-2 (AQP2) is a molecular water channel protein responsible for water reabsorption by the kidney collecting ducts. Many water balance disorders are associated with defects in AQP2 gene expression regulated by the peptide hormone vasopressin. Here, we studied roles of Elf3 (E26 transformation-specific (Ets)-related transcription factor 3) in AQP2 gene expression in the collecting duct cells (mpkCCD). Vasopressin increased AQP2 mRNA and protein levels without affecting AQP2 mRNA degradation, indicative of transcriptional regulation. Elf3 knockdown and overexpression, respectively, reduced and increased AQP2 gene expression under basal and vasopressin-stimulated conditions. However, the vasopressin-to-basal ratios of AQP2 gene expression levels remained constant, indicating that Elf3 does not directly mediate vasopressin response but modulates the level of AQP2 gene expression inducible by vasopressin. The Elf3-modulated AQP2 gene expression was associated with AQP2 promoter activity, in line with Elf3's ability to bind an Ets element in the AQP2 promoter. Mutation in the Ets element reduced both basal and vasopressin-stimulated AQP2 promoter activity, again without affecting vasopressin-to-basal ratios of the AQP2 promoter activity. Lithium chloride reduced both Elf3 and AQP2 mRNA in the mpkCCD cells as well as in mouse kidney inner medulla. We conclude that Elf3 modulates AQP2 promoter activity thereby gauging vasopressin-inducible AQP2 gene expression levels. Our data provide a potential explanation to lithium-induced nephrogenic diabetes insipidus where lithium reduces Elf3 and hence AQP2 abundance.

8.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511391

RESUMO

The nonstructural protein NS5A of hepatitis C virus (HCV) is a phosphorylated protein that is indispensable for viral replication and assembly. We previously showed that NS5A undergoes sequential serine S232/S235/S238 phosphorylation resulting in NS5A transition from a hypo- to a hyperphosphorylated state. Here, we studied functions of S229 with a newly generated antibody specific to S229 phosphorylation. In contrast to S232, S235, or S238 phosphorylation detected only in the hyperphosphorylated NS5A, S229 phosphorylation was found in both hypo- and hyperphosphorylated NS5A, suggesting that S229 phosphorylation initiates NS5A sequential phosphorylation. Immunoblotting showed an inverse relationship between S229 phosphorylation and S235 phosphorylation. When S235 was phosphorylated as in the wild-type NS5A, the S229 phosphorylation level was low; when S235 could not be phosphorylated as in the S235A mutant NS5A, the S229 phosphorylation level was high. These results suggest an intrinsic feedback regulation between S229 phosphorylation and S235 phosphorylation. It has been known that NS5A distributes in large static and small dynamic intracellular structures and that both structures are required for the HCV life cycle. We found that S229A or S229D mutation was lethal to the virus and that both increased NS5A in large intracellular structures. Similarly, the lethal S235A mutation also increased NS5A in large structures. Likewise, the replication-compromised S235D mutation also increased NS5A in large structures, albeit to a lesser extent. Our data suggest that S229 probably cycles through phosphorylation and dephosphorylation to maintain a delicate balance of NS5A between hypo- and hyperphosphorylated states and the intracellular distribution necessary for the HCV life cycle.IMPORTANCE This study joins our previous efforts to elucidate how NS5A transits between hypo- and hyperphosphorylated states via phosphorylation on a series of highly conserved serine residues. Of the serine residues, serine 229 is the most interesting since phosphorylation-mimicking and phosphorylation-ablating mutations at this serine residue are both lethal. With a new high-quality antibody specific to serine 229 phosphorylation, we concluded that serine 229 must remain wild type so that it can dynamically cycle through phosphorylation and dephosphorylation that govern NS5A between hypo- and hyperphosphorylated states. Both are required for the HCV life cycle. When phosphorylated, serine 229 signals phosphorylation on serine 232 and 235 in a sequential manner, leading NS5A to the hyperphosphorylated state. As serine 235 phosphorylation is reached, serine 229 is dephosphorylated, stopping signal for hyperphosphorylation. This balances NS5A between two phosphorylation states and in intracellular structures that warrant a productive HCV life cycle.


Assuntos
Hepacivirus/metabolismo , Serina/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Células HEK293 , Hepatite C/virologia , Humanos , Fosforilação , Proteínas Quinases/metabolismo , Proteômica , Renilla , Proteínas não Estruturais Virais/química , Replicação Viral/fisiologia
9.
J Proteome Res ; 18(7): 2813-2825, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31199160

RESUMO

Protein phosphorylation is a reversible post-translational modification that regulates many biological processes in almost all living forms. In the case of the hepatitis C virus (HCV), the nonstructural protein 5A (NS5A) is believed to transit between hypo- and hyper-phosphorylated forms that interact with host proteins to execute different functions; however, little was known about the proteins that bind either form of NS5A. Here, we generated two high-quality antibodies specific to serine 235 nonphosphorylated hypo- vs serine 235 phosphorylated (pS235) hyper-phosphorylated form of NS5A and for the first time segregated these two forms of NS5A plus their interacting proteins for dimethyl-labeling based proteomics. We identified 629 proteins, of which 238 were quantified in three replicates. Bioinformatics showed 46 proteins that preferentially bind hypo-phosphorylated NS5A are involved in antiviral response and another 46 proteins that bind pS235 hyper-phosphorylated NS5A are involved in liver cancer progression. We further identified a DNA-dependent kinase (DNA-PK) that binds hypo-phosphorylated NS5A. Inhibition of DNA-PK with an inhibitor or via gene-specific knockdown significantly reduced S232 phosphorylation and NS5A hyper-phosphorylation. Because S232 phosphorylation initiates sequential S232/S235/S238 phosphorylation leading to NS5A hyper-phosphorylation, we identified a new protein kinase that regulates a delicate balance of NS5A between hypo- and hyper-phosphorylation states, respectively, involved in host antiviral responses and liver cancer progression.


Assuntos
Hepacivirus/química , Proteômica/métodos , Proteínas não Estruturais Virais/metabolismo , Proteína Quinase Ativada por DNA/análise , Proteína Quinase Ativada por DNA/metabolismo , Hepatite C/complicações , Hepatite C/imunologia , Hepatite C/patologia , Humanos , Neoplasias Hepáticas/etiologia , Fosforilação , Ligação Proteica
10.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30089697

RESUMO

The hepatitis C virus (HCV) protein NS5A is a phosphorylated protein with crucial roles in viral replication and assembly. NS5A was thought to undergo sequential phosphorylation on a series of conserved serine residues; however, the phosphorylation cascade remained obscure. Using three phosphorylation-specific antibodies, we found that phosphorylation at S232, S235, and S238 occurred in parallel in HCV-infected Huh7.5.1 cells, suggestive of intramolecular sequential NS5A phosphorylation from S232 through S235 to S238 by casein kinase Iα (CKIα). In line with this, alanine mutation at S225, S229, or S232 reduced, whereas aspartate mutation at the same sites rescued, NS5A phosphorylation at S232, S235, and S238. In contrast, alanine or aspartate mutation at S235 or S238 had little or no effect on S232 or S235 phosphorylation. Consistent with an intramolecular sequential phosphorylation cascade, S232, S235, and S238 phosphorylation coexisted on one single NS5A molecule. Phosphorylation of NH2-terminal serine residues in one NS5A molecule did not rescue phosphorylation of COOH-terminal serine residues in another NS5A molecule. CKIα inhibition reduced NS5A phosphorylation at S232, S235, and S238. In summary, our results are indicative of a CKIα-mediated intramolecular, sequential phosphorylation cascade from S232 through S235 to S238 of the HCV NS5A protein. S225 and S229 also contribute substantially to the above sequential phosphorylation cascade of NS5A.IMPORTANCE The nonstructural protein 5A (NS5A) of the hepatitis C virus was thought to undergo sequential intramolecular phosphorylation on a series of serine residues; however, direct evidence was missing. We offer the first direct evidence of a CKIα-mediated intramolecular sequential NS5A phosphorylation cascade from serine 232 through 235 to 238. This sequential phosphorylation cascade occurs in the disordered low-complexity sequence I region, which together with the domain I region forms an RNA-binding groove in an NS5A dimer. Sequential phosphorylation in the disordered region adds charge-charge repulsion to the RNA-binding groove and probably thereby regulates NS5A's RNA-binding ability and functions in viral RNA replication and assembly.


Assuntos
Caseína Quinase Ialfa/metabolismo , Hepacivirus/fisiologia , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Processamento de Proteína Pós-Traducional , Serina/metabolismo , Proteínas não Estruturais Virais/metabolismo , Substituição de Aminoácidos , Linhagem Celular , Análise Mutacional de DNA , Humanos , Fosforilação
11.
Int J Mol Sci ; 19(1)2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29315273

RESUMO

Chronic hepatitis C virus (HCV) infection is still a global epidemic despite the introduction of several highly effective direct-acting antivirals that are tagged with sky-high prices. The present study aimed to identify an herbal decoction that ameliorates HCV infection. Among six herbal decoctions tested, the Aeginetia indica decoction had the most profound effect on the HCV reporter activity in infected Huh7.5.1 liver cells in a dose- and time-dependent manner. The Aeginetia indica decoction exerted multiple inhibitory effects on the HCV life cycle. Pretreatment of the cells with the Aeginetia indica decoction prior to HCV infection reduced the HCV RNA and non-structural protein 3 (NS3) protein levels in the infected cells. The Aeginetia indica decoction reduced HCV internal ribosome entry site-mediated protein translation activity. It also reduced the HCV RNA level in the infected cells in association with reduced NS5A phosphorylation at serine 235, a predominant phosphorylation event indispensable to HCV replication. Thus, the Aeginetia indica decoction inhibits HCV infection, translation, and replication. Mechanistically, the Aeginetia indica decoction probably reduced HCV replication via reducing NS5A phosphorylation at serine 235.


Assuntos
Hepacivirus/efeitos dos fármacos , Orobanchaceae/química , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Hepacivirus/metabolismo , Humanos , Orobanchaceae/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
12.
Am J Physiol Renal Physiol ; 314(2): F219-F229, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29070569

RESUMO

The mouse cortical collecting duct cell (mpkCCD) has been an instrumental cell model for studying vasopressin-mediated aquaporin-2 regulation. This cell line was first developed by Vandewalle's group from a transgenic mouse carrying the transforming SV40 antigens driven by the pyruvate kinase promoter. To immortalize the cells, four hormone supplements (dexamethasone, epidermal growth factor, insulin, and triiodothyronine) were used to enhance SV40 antigen expression; however, these hormones appear to have various effects on aquaporin-2 gene expression in the cells. Here, we evaluated the effects of each hormone supplement and found that dexamethasone enhanced vasopressin-induced aquaporin-2 gene expression at both mRNA and protein levels in a dose- and time-dependent manner, without affecting mRNA or protein stability. The effects of dexamethasone were attributed largely to enhanced aquaporin-2 mRNA transcription in association with an enhanced aquaporin-2 promoter activity. Dexamethasone did not affect vasopressin-regulated aquaporin-2 phosphorylation and trafficking. In summary, we optimized the conditions to enhance vasopressin-induced endogenous aquaporin-2 gene expression in the mpkCCD cells. By increasing the amount of aquaporin-2 protein in the cells, our method will facilitate the study of aquaporin-2 cell physiology regulated by vasopressin.


Assuntos
Aquaporina 2/metabolismo , Dexametasona/farmacologia , Túbulos Renais Coletores/efeitos dos fármacos , Vasopressinas/farmacologia , Animais , Técnicas de Cultura de Células , Linhagem Celular , Relação Dose-Resposta a Droga , Túbulos Renais Coletores/metabolismo , Camundongos , Fosforilação , Regiões Promotoras Genéticas/efeitos dos fármacos , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima
13.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28446668

RESUMO

The nonstructural protein 5A (NS5A) of the hepatitis C virus (HCV) is a phosphoprotein with two phosphorylation states: hypo- and hyperphosphorylation. Genetic mutation studies have demonstrated a cluster of serine residues responsible for NS5A hyperphosphorylation and functions in viral replication and assembly; however, the phosphorylation levels and potential interactions among the serine residues are unclear. We used three specific antibodies to measure NS5A phosphorylation at S222, S235, and S238 that were identified in our previous proteomics study. In the HCV (J6/JFH-1)-infected Huh7.5.1 cells, S222 phosphorylation was barely detected, whereas S235 phosphorylation and S238 phosphorylation were always detected in parallel in time and intracellular spaces. S235A mutation eliminated S238 phosphorylation whereas S238A mutation did not affect S235 phosphorylation, indicating that S235 phosphorylation occurs independently of S238 phosphorylation while S238 phosphorylation depends on S235 phosphorylation. In line with this, immunoprecipitation coupled with immunoblotting showed that S235 phosphorylation existed alone without S238 phosphorylation, whereas S238 phosphorylation existed only when S235 was phosphorylated on the same NS5A molecule. S235-phosphorylated NS5A constituted the primary hyperphosphorylated NS5A species. S235A mutation blunted viral replication, whereas S238A mutation did not affect replication. We concluded that S235 is the primary NS5A hyperphosphorylation site required for HCV replication. S238 is likely phosphorylated by casein kinase Iα, which requires a priming phosphorylation at S235.IMPORTANCE It has been known for years that the hepatitis C virus nonstructural protein 5A (NS5A) undergoes transition between two phosphorylation states: hypo- and hyperphosphorylation. It is also known that a cluster of serine residues is responsible for NS5A hyperphosphorylation and functions; however, the primary serine residue responsible for NS5A hyperphosphorylation is not clear. Here, we show for the first time that serine 235-phosphorylated NS5A constitutes the primary hyperphosphorylated NS5A species required for viral replication. We also show that NS5A phosphorylation among the serine residues is interdependent and occurs in a directional manner, i.e., phosphorylation at serine 235 leads to phosphorylation at serine 238. Our data provide the first proof-of-principle evidence that NS5A undergoes a sequential phosphorylation cascade.


Assuntos
Hepacivirus/fisiologia , Processamento de Proteína Pós-Traducional , Serina/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Substituição de Aminoácidos , Linhagem Celular , Análise Mutacional de DNA , Hepatócitos/virologia , Humanos , Serina/genética , Proteínas não Estruturais Virais/genética
14.
J Biol Chem ; 292(19): 7984-7993, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28336531

RESUMO

The abundance of integral membrane proteins in the plasma membrane is determined by a dynamic balance between exocytosis and endocytosis, which can often be regulated by physiological stimuli. Here, we describe a mechanism that accounts for the ability of the peptide hormone vasopressin to regulate water excretion via a phosphorylation-dependent modulation of the PDZ domain-ligand interaction involving the water channel protein aquaporin-2. We discovered that the PDZ domain-containing protein Sipa1l1 (signal-induced proliferation-associated 1 like 1) binds to the cytoplasmic PDZ-ligand motif of aquaporin-2 and accelerates its endocytosis in the absence of vasopressin. Vasopressin-induced aquaporin-2 phosphorylation within the type I PDZ-ligand motif disrupted the interaction, in association with reduced aquaporin-2 endocytosis and prolonged plasma membrane aquaporin-2 retention. This phosphorylation-dependent alteration in the PDZ domain-ligand interaction was explained by 3D structural models, which showed a hormone-regulated mechanism that controls osmotic water transport and systemic water balance in mammals.


Assuntos
Aquaporina 2/química , Proteínas Ativadoras de GTPase/química , Vasopressinas/química , Animais , Aquaporina 2/genética , Endocitose , Proteínas Ativadoras de GTPase/genética , Células HEK293 , Humanos , Rim/metabolismo , Túbulos Renais Coletores/metabolismo , Ligantes , Camundongos , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Transporte Proteico , Proteômica , RNA Interferente Pequeno/metabolismo , Serina/química , Água/química
15.
PLoS One ; 11(11): e0166763, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27875595

RESUMO

Phosphorylation at serine 235 (S235) of the hepatitis C virus (HCV) non-structural protein 5A (NS5A) plays a critical role in the viral life cycle. For medical and virological interests, we exploited the HEK293T kidney cells to test 3 candidate protein kinases on NS5A S235 phosphorylation. Inhibitors that inhibit casein kinase I α (CKIα), polo-like kinase I (PlKI) or calmodulin-dependent kinase II (CaMKII) all reduced NS5A S235 phosphorylation. CKIα was studied previously and PlKI had severe cytotoxicity, thus CaMKII was selected for validation in the Huh7.5.1 liver cells. In the HCV (J6/JFH1)-infected Huh7.5.1 cells, CaMKII inhibitor reduced NS5A S235 phosphorylation and HCV RNA levels without apparent cytotoxicity. RT-PCR analysis showed expression of CaMKII γ and δ isoforms in the Huh7.5.1 cells. Both CaMKII γ and δ directly phosphorylated NS5A S235 in vitro. CaMKII γ or δ single knockdown did not affect NS5A S235 phosphorylation but elevated the HCV RNA levels in the infected cells. CKIα plus CaMKII (γ or δ) double knockdown reduced NS5A S235 phosphorylation and reduced HCV RNA levels; however, the HCV RNA levels were higher than those in the infected cells with CKIα single knockdown. We conclude that CKIα-mediated NS5A S235 phosphorylation is critical for HCV replication. CaMKII γ and δ may have negative roles in the HCV life cycle.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Caseína Quinase Ialfa/metabolismo , Hepacivirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Caseína Quinase Ialfa/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Serina/genética , Serina/metabolismo , Proteínas não Estruturais Virais/genética , Quinase 1 Polo-Like
16.
J Biol Chem ; 291(8): 3918-31, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26702051

RESUMO

The non-structural protein 5A (NS5A) is a hepatitis C virus (HCV) protein indispensable for the viral life cycle. Many prior papers have pinpointed several serine residues in the low complexity sequence I region of NS5A responsible for NS5A phosphorylation; however, the functions of specific phosphorylation sites remained obscure. Using phosphoproteomics, we identified three phosphorylation sites (serines 222, 235, and 238) in the NS5A low complexity sequence I region. Reporter virus and replicon assays using phosphorylation-ablated alanine mutants of these sites showed that Ser-235 dominated over Ser-222 and Ser-238 in HCV replication. Immunoblotting using an Ser-235 phosphorylation-specific antibody showed a time-dependent increase in Ser-235 phosphorylation that correlated with the viral replication activity. Ser-235 phosphorylated NS5A co-localized with double-stranded RNA, consistent with its role in HCV replication. Mechanistically, Ser-235 phosphorylation probably promotes the replication complex formation via increasing NS5A interaction with the human homologue of the 33-kDa vesicle-associated membrane protein-associated protein. Casein kinase Iα (CKIα) directly phosphorylated Ser-235 in vitro. Inhibition of CKIα reduced Ser-235 phosphorylation and the HCV RNA levels in the infected cells. We concluded that NS5A Ser-235 phosphorylated by CKIα probably promotes HCV replication via increasing NS5A interaction with the 33-kDa vesicle-associated membrane protein-associated protein.


Assuntos
Hepacivirus/fisiologia , Proteômica , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Linhagem Celular Tumoral , Humanos , Fosforilação , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas não Estruturais Virais/genética
17.
PLoS One ; 10(3): e0122528, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25826279

RESUMO

An appropriate liver-specific progenitor cell marker is a stepping stone in liver regenerative medicine. Here, we report brain isoform glycogen phosphorylase (GPBB) as a novel liver progenitor cell marker. GPBB was identified in a protein complex precipitated by a monoclonal antibody Ligab generated from a rat liver progenitor cell line Lig-8. Immunoblotting results show that GPBB was expressed in two liver progenitor cell lines Lig-8 and WB-F344. The levels of GPBB expression decreased in the WB-F344 cells under sodium butyrate (SB)-induced cell differentiation, consistent with roles of GPBB as a liver progenitor cell marker. Short hairpin RNA (shRNA)-mediated GPBB knockdown followed by glucose deprivation test shows that GPBB aids in liver progenitor cell survival under low glucose conditions. Furthermore, shRNA-mediated GPBB knockdown followed by SB-induced cell differentiation shows that reducing GPBB expression delayed liver progenitor cell differentiation. We conclude that GPBB is a novel liver progenitor cell marker, which facilitates liver progenitor cell survival under low glucose conditions and cell differentiation.


Assuntos
Glicogênio Fosforilase Encefálica/metabolismo , Glicogênio Fosforilase/metabolismo , Fígado/citologia , Células-Tronco/enzimologia , Animais , Ácido Butírico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Técnicas de Silenciamento de Genes , Glicogênio Fosforilase Encefálica/genética , Imunoprecipitação , Ratos , Ratos Endogâmicos F344
18.
Proc Natl Acad Sci U S A ; 110(42): 17119-24, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24085853

RESUMO

In kidney collecting duct cells, filamentous actin (F-actin) depolymerization is a critical step in vasopressin-induced trafficking of aquaporin-2 to the apical plasma membrane. However, the molecular components of this response are largely unknown. Using stable isotope-based quantitative protein mass spectrometry and surface biotinylation, we identified 100 proteins that showed significant abundance changes in the apical plasma membrane of mouse cortical collecting duct cells in response to vasopressin. Fourteen of these proteins are involved in actin cytoskeleton regulation, including actin itself, 10 actin-associated proteins, and 3 regulatory proteins. Identified were two integral membrane proteins (Clmn, Nckap1) and one actin-binding protein (Mpp5) that link F-actin to the plasma membrane, five F-actin end-binding proteins (Arpc2, Arpc4, Gsn, Scin, and Capzb) involved in F-actin reorganization, and two actin adaptor proteins (Dbn1, Lasp1) that regulate actin cytoskeleton organization. There were also protease (Capn1), protein kinase (Cdc42bpb), and Rho guanine nucleotide exchange factor 2 (Arhgef2) that mediate signal-induced F-actin changes. Based on these findings, we devised a live-cell imaging method to observe vasopressin-induced F-actin dynamics in polarized mouse cortical collecting duct cells. In response to vasopressin, F-actin gradually disappeared near the center of the apical plasma membrane while consolidating laterally near the tight junction. This F-actin peripheralization was blocked by calcium ion chelation. Vasopressin-induced apical aquaporin-2 trafficking and forskolin-induced water permeability increase were blocked by F-actin disruption. In conclusion, we identified a vasopressin-regulated actin network potentially responsible for vasopressin-induced apical F-actin dynamics that could explain regulation of apical aquaporin-2 trafficking and water permeability increase.


Assuntos
Actinas/metabolismo , Antidiuréticos/farmacologia , Túbulos Renais Coletores/metabolismo , Proteoma/metabolismo , Vasopressinas/farmacologia , Adjuvantes Imunológicos/farmacologia , Animais , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Colforsina/farmacologia , Citoesqueleto/metabolismo , Túbulos Renais Coletores/citologia , Camundongos , Proteínas dos Microfilamentos/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Água/metabolismo
19.
Vet Clin Pathol ; 41(4): 455-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23130944

RESUMO

Aquaporin-2 (AQP2), the vasopressin-regulated water channel of the renal collecting duct, is dysregulated in numerous disorders of water balance in people and animals, including those associated with polyuria (urinary tract obstruction, hypokalemia, inflammation, and lithium toxicity) and with dilutional hyponatremia (syndrome of inappropriate antidiuresis, congestive heart failure, cirrhosis). Normal regulation of AQP2 by vasopressin involves 2 independent regulatory mechanisms: (1) short-term regulation of AQP2 trafficking to and from the apical plasma membrane, and (2) long-term regulation of the total abundance of the AQP2 protein in the cells. Most disorders of water balance are the result of dysregulation of processes that regulate the total abundance of AQP2 in collecting duct cells. In general, the level of AQP2 in a collecting duct cell is determined by a balance between production via translation of AQP2 mRNA and removal via degradation or secretion into the urine in exosomes. AQP2 abundance increases in response to vasopressin chiefly due to increased translation subsequent to increases in AQP2 mRNA. Vasopressin-mediated regulation of AQP2 gene transcription is poorly understood, although several transcription factor-binding elements in the 5' flanking region of the AQP2 gene have been identified, and candidate transcription factors corresponding to these elements have been discovered in proteomics studies. Here, we review progress in this area and discuss elements of vasopressin signaling in the collecting duct that may impinge on regulation of AQP2 in health and in the context of examples of polyuric diseases.


Assuntos
Aquaporina 2/metabolismo , Túbulos Renais Coletores/fisiopatologia , Poliúria/fisiopatologia , Transdução de Sinais , Vasopressinas/metabolismo , Desequilíbrio Hidroeletrolítico/fisiopatologia , Animais , Aquaporina 2/genética , Humanos , Túbulos Renais Coletores/metabolismo , Vasopressinas/genética
20.
J Am Soc Nephrol ; 23(6): 1008-18, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22440904

RESUMO

Vasopressin controls transport in the renal collecting duct, in part, by regulating transcription. This complex process, which can involve translocation and/or modification of transcriptional regulators, is not completely understood. Here, we applied a method for large-scale profiling of nuclear proteins to quantify vasopressin-induced changes in the nuclear proteome of cortical collecting duct (mpkCCD) cells. Using stable isotope labeling and tandem mass spectrometry, we quantified 3987 nuclear proteins and identified significant changes in the abundance of 65, including previously established targets of vasopressin signaling in the collecting duct. Vasopressin-induced changes in the abundance of the transcription factors JunB, Elf3, Gatad2b, and Hmbox1; transcriptional co-regulators Ctnnb1 (ß-catenin) and Crebbp; subunits of the Mediator complex; E3 ubiquitin ligase Nedd4; nuclear transport regulator RanGap1; and several proteins associated with tight junctions and adherens junctions. Bioinformatic analysis showed that many of the quantified transcription factors have putative binding sites in the 5'-flanking regions of genes coding for the channel proteins Aqp2, Aqp3, Scnn1b (ENaCß), and Scnn1g (ENaCγ), which are known targets of vasopressin. Immunoblotting demonstrated that the increase in ß-catenin in nuclear fractions was accompanied by an even larger increase in its phosphorylated form (pSer552). The findings provide a new online database resource for nuclear proteomics (http://helixweb.nih.gov/ESBL/Database/mNPD/) and generate new hypotheses regarding vasopressin-mediated transcriptional regulation in the collecting duct.


Assuntos
Túbulos Renais Coletores/citologia , Proteínas Nucleares/metabolismo , Transdução de Sinais/fisiologia , Vasopressinas/metabolismo , Transporte Biológico , Células Cultivadas , Humanos , Túbulos Renais Coletores/fisiologia , Proteômica/métodos , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Receptores de Vasopressinas/análise , Receptores de Vasopressinas/metabolismo , Sensibilidade e Especificidade , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas em Tandem , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo , Vasopressinas/análise , beta Catenina/análise , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...