Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Anat ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37489659

RESUMO

This study investigated the effect of the prone trunk extension test (PTE) on lumbar and lower limb muscle stiffness to explore the optimal angle for lumbar muscle training, understand the peripheral muscle force transmission effect, and determine the modulation strategy and interaction mode of different muscles during PTE. Twenty healthy young females were recruited for this study, and the stiffness of the erector spinae (ES), semitendinosus (ST), biceps femoris (BF), medial head of the gastrocnemius (MG), and lateral head of the gastrocnemius (LG) was measured by MyotonPRO under four angular PTE conditions (0° horizontal position, 10°, 20°, and 30°). With the increasing angle, the stiffness of ES decreased gradually, while ST and BF increased first and then decreased. The stiffness of MG and LG increased first, then decreased, then increased. There was a moderate to strong negative correlation between ES stiffness variation and ST (r = -0.819 to -0.728, p < 0.001), BF (r = -0.620 to -0.527, p < 0.05), MG (r = -788 to -0.611, p < 0.01), and LG (r = -0.616 to -0.450, p < 0.05). Horizontal PTE maximizes the activation of ES. There is a tension transfer between the ES, hamstrings, and gastrocnemius, mainly between the ES, ST, and LG. The study provides data to explore the effect of peripheral muscle force transmission and the modulation strategies of different muscles during trunk extension.

2.
Front Physiol ; 13: 918176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35941935

RESUMO

Objective: This study investigated the acute effects of PNF stretching on hamstring flexibility and muscle stiffness of lower limbs between genders. Methods: 15 male and 15 female university students without any injury histories on lower limbs in the past 3 months were included in this study were selected. All subjects were measured by MyotonPRO before and after stretching to determine the muscle stiffness of the biceps femoris muscle (BF), semitendinosus muscle (ST) of the hamstring and the medial gastrocnemius muscles (MG), lateral gastrocnemius muscles (LG), and the soleus (SOL) of the triceps surae muscles. Additionally, their flexibility was measured using the sit-and-reach test (the SR test) and passive hip range of motion (ROM). Differences based on time (pre-stretching vs. post-stretching) and sex (females vs. males) were assessed using 2 × 2 repeated measures AVONA. Results: There was a significant decrease in the stiffness of the hamstring and triceps surae muscles after stretching (BF, MG, LG, and SOL: p < 0.001; ST: p = 0.003). The muscle stiffness of the hamstring and triceps surae muscles is larger in males than in females at all time points (p < 0.001). There was a significant increase in hip flexion angle and the SR test in males and females after PNF stretching (p < 0.001); However, there was no difference in the change in the muscle stiffness and the flexibility between genders (p > 0.05). Conclusion: PNF stretching helped improve hamstring flexibility and decrease muscle stiffness. Stretching the hamstrings can also contribute to a decrease in the stiffness of the triceps surae muscles. The muscle stiffness of males before and after stretching is always greater than that of females. However, there was no difference in the change of improvement in stretching between genders.

3.
Med Biol Eng Comput ; 60(10): 3009-3017, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36040547

RESUMO

The purposes of this study were to (1) examine the effects of different cervicothoracic postures on the stiffness of trapezius muscles and (2) compare the stiffness of the dominant and non-dominant trapezius muscles. Twenty-one healthy participants joined in this project. After maintaining different cervicothoracic postures for 2 min, MyotonPRO was used to measure the stiffness of the trapezius. The results showed that (1) the stiffness of trapezius muscles was significantly affected by different cervicothoracic postures. With the increase of neck flexion angle, the stiffness of the trapezius muscles increased (p < 0.05). The muscle stiffness of upper back relaxed was higher than that of upper back upright (p < 0.05). (2) The trapezius muscles on the non-dominant side were stiffer than that on the dominant side (p < 0.05). Poor cervicothoracic postures will increase the stiffness of upper, middle and lower trapezius muscles. Keeping the neck and upper back upright will keep the muscle stiffness at a low level, so as to reduce the occurrence of neck and shoulder fatigue and pain.


Assuntos
Músculos Superficiais do Dorso , Eletromiografia , Humanos , Pescoço , Postura/fisiologia , Ombro/fisiologia , Músculos Superficiais do Dorso/fisiologia
4.
Front Bioeng Biotechnol ; 10: 913423, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814017

RESUMO

Purpose: Monitoring the contractility of muscles assists the clinician in understanding how muscle functions as part of the kinetic system. This study investigated the effect of knee joint angles under different resistance on the stiffness of the medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus (SOL) muscles using the shear wave elastography (SWE) technique. Methods: A total of 22 females were recruited. During isometric plantar flexion, at knee 0-degree (fully extended) and knee 90-degree (flexed 90°), the shear modulus on the MG, LG, and SOL was measured by shear wave elastography at no contraction and two intensities (40% and 80%) of maximal voluntary contraction (MVC). Shear modulus is a mechanical parameter to describe stiffness, and stiffness is a proxy for muscle contractility. Results: There were moderate-to high-positive correlations between the active stiffness of triceps surae muscles and isometric contraction intensity (r: 0.57-0.91, p<0.001). The active stiffness in MG and LG with extended knees was higher than that with flexed knees (p<0.001). The active stiffness in SOL with flexed knee was higher than that with extended knee (p<0.001). Conclusion: Active stiffness can be considered a quantitative indicator generated by the force output of the triceps surae. Different knee joint angles cause three triceps surae muscles to exhibit non-uniform mechanical properties, which may explain part of the mechanism of soft tissue injury during physical exercise.

5.
Front Physiol ; 13: 836435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418872

RESUMO

Purposes: To detect the effects of hip joint position on the quadriceps recruitment pattern of different resistance levels of rectus femoris (RF), vastus intermedius (VI), vastus lateralis (VL), and vastus medialis obliquus (VMO) in healthy people during knee extension. Methods: Twenty healthy females performed isometric knee extension contractions at 0, 10, 20, and 30% of maximal voluntary isometric contraction (MVIC) with a 90° and 0° hip angle. Ultrasound shear-wave elastography was used to evaluate the shear elastic modulus of RF, VI, VL, and VMO during resting and contraction states. Results: At resting state, stiffness of RF was about 50% higher at 0° compared with at 90° of the hip (p < 0.01). There were significant differences in comparisons between 0 and 10% MVIC, 10 and 20% MVIC, and 20 and 30% MVIC in the four muscles, except that there was no significant difference between 20 and 30% MVIC for RF. There was a significant positive correlation between muscle stiffness and resistance level (r = 0.78-0.94, p < 0.001). Conclusions: Hip joint position had effects on the quadriceps recruitment pattern of different resistance levels in healthy people during knee extension.

6.
Appl Bionics Biomech ; 2022: 3300835, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355794

RESUMO

Background: The upper limb neurodynamic test 1 (ULNT1) consists of a series of movements that are thought to detect an increase in neuromechanical sensitivity. In vivo, no trail was made to quantify the association between the nerve elasticity and different limb postures during ULNT1. Objectives: (1) To investigate the relationship between nerve elasticity and limb postures during ULNT1 and (2) to investigate the intra- and interoperator reliabilities of shear wave elastography (SWE) in quantifying the elasticity of median nerve. Methods: Twenty healthy subjects (mean age: 19.9 ± 1.4 years old) participated in this study. The median nerve was imaged during elbow extension in the following postures: (1) with neutral posture, (2) with wrist extension (WE), (3) with contralateral cervical flexion (CCF), and (4) with both WE and CCF. The intra- and interoperator reliabilities measured by two operators at NP and CCF+WE and intraclass correlation coefficients (ICCs) were calculated. Results: The intraoperator (ICC = 0.72-0.75) and interoperator (ICC = 0.89-0.94) reliabilities for measuring the elasticity of the median nerve ranged from good to excellent. The mean shear modulus of the median nerve increased by 53.68% from NP to WE+CCF. Conclusion: SWE is a reliable tool to quantify the elasticity of the median nerve. There was acute modulation in the elasticity of the median nerve during the ULNT1 when healthy participants reported substantial discomfort. Further studies need to focus on the elasticity properties of the median nerve in patients with peripheral neuropathic pain.

7.
Appl Bionics Biomech ; 2022: 9406863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178122

RESUMO

Knee osteoarthritis is a disease with the degeneration of articular cartilage as its main feature. Cartilage thickness cannot become a single index to evaluate cartilage degeneration, so it is essential to also evaluate the stiffness. The purposes were as follows: (1) to examine test-retest reliabilities of the elastic modulus measurement in distal femoral articular cartilage (FAC) and compare the changes in specific-regional of distal FAC, (2) to explore the difference in distal FAC stiffness and thickness between the dominant and nondominant sides, and (3) to examine the correlation between the elastic properties of cartilage and the thickness of cartilage. Twenty healthy participants were recruited. The stiffness of distal FAC at the lateral femoral condyle (LFC), medial femoral condyle (MFC), and intercondylar notch (IN) was quantified using shear-wave elastography (SWE). Intra- and interrater reliabilities were excellent for measuring the stiffness of distal FAC (ICC: 0.83-0.98). About a 50% increase in the stiffness of LFC (40.78 kPa) was found when compared with IN (21.82 kPa) and MFC (18.34 kPa). No significant difference was found between the dominant and nondominant sides in distal FAC stiffness and thickness. There was no correlation between the stiffness and thickness of the distal FAC. In conclusion, SWE can quantify the stiffness of the distal FAC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...