Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Sci Rep ; 14(1): 11704, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778121

RESUMO

Chemotherapeutic agents can inhibit the proliferation of malignant cells due to their cytotoxicity, which is limited by collateral damage. Dihydroartemisinin (DHA), has a selective anti-cancer effect, whose target and mechanism remain uncovered. The present work aims to examine the selective inhibitory effect of DHA as well as the mechanisms involved. The findings revealed that the Lewis cell line (LLC) and A549 cell line (A549) had an extremely rapid proliferation rate compared with the 16HBE cell line (16HBE). LLC and A549 showed an increased expression of NRAS compared with 16HBE. Interestingly, DHA was found to inhibit the proliferation and facilitate the apoptosis of LLC and A549 with significant anti-cancer efficacy and down-regulation of NRAS. Results from molecular docking and cellular thermal shift assay revealed that DHA could bind to epidermal growth factor receptor (EGFR) molecules, attenuating the EGF binding and thus driving the suppressive effect. LLC and A549 also exhibited obvious DNA damage in response to DHA. Further results demonstrated that over-expression of NRAS abated DHA-induced blockage of NRAS. Moreover, not only the DNA damage was impaired, but the proliferation of lung cancer cells was also revitalized while NRAS was over-expression. Taken together, DHA could induce selective anti-lung cancer efficacy through binding to EGFR and thereby abolishing the NRAS signaling pathway, thus leading to DNA damage, which provides a novel theoretical basis for phytomedicine molecular therapy of malignant tumors.


Assuntos
Artemisininas , Proliferação de Células , Dano ao DNA , Receptores ErbB , GTP Fosfo-Hidrolases , Neoplasias Pulmonares , Proteínas de Membrana , Transdução de Sinais , Receptores ErbB/metabolismo , Humanos , Proliferação de Células/efeitos dos fármacos , Artemisininas/farmacologia , Dano ao DNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Células A549 , Camundongos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ligação Proteica
2.
Clin Exp Med ; 24(1): 93, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693424

RESUMO

Long non-coding RNAs (lncRNAs) are transcripts that contain more than 200 nucleotides. Despite their inability to code proteins, multiple studies have identified their important role in human cancer through different mechanisms. LncRNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1), a newly discovered lncRNA located on human chromosome 15q24.1, has recently been shown to be involved in the occurrence and progression of various malignancies, such as colorectal cancer, gastric cancer, hepatocellular carcinoma, prostate cancer, non-small cell lung cancer, ovarian cancer, cervical cancer, breast cancer, glioma, thymic carcinoma, pancreatic carcinoma. LOXL1-AS1 acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-374b-5p, miR-21, miR-423-5p, miR-589-5p, miR-28-5p, miR-324-3p, miR-708-5p, miR-143-3p, miR-18b-5p, miR-761, miR-525-5p, miR-541-3p, miR-let-7a-5p, miR-3128, miR-3614-5p, miR-377-3p and miR-1224-5p to promote tumor cell proliferation, invasion, migration, apoptosis, cell cycle, and epithelial-mesenchymal transformation (EMT). In addition, LOXL1-AS1 is involved in the regulation of P13K/AKT and MAPK signaling pathways. This article reviews the current understanding of the biological function and clinical significance of LOXL1-AS1 in human cancers. These findings suggest that LOXL1-AS1 may be both a reliable biomarker and a potential therapeutic target for cancers.


Assuntos
Biomarcadores Tumorais , Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Neoplasias/genética , Neoplasias/patologia , Biomarcadores Tumorais/genética , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética
3.
Phytother Res ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761036

RESUMO

Enhancement of malignant cell immunogenicity to relieve immunosuppression of lung cancer microenvironment is essential in lung cancer treatment. In previous study, we have demonstrated that dihydroartemisinin (DHA), a kind of phytopharmaceutical, is effective in inhibiting lung cancer cells and boosting their immunogenicity, while the initial target of DHA's intracellular action is poorly understood. The present in-depth analysis aims to reveal the influence of DHA on the highly expressed TOM70 in the mitochondrial membrane of lung cancer. The affinity of DHA and TOM70 was analyzed by microscale thermophoresis (MST), pronase stability, and thermal stability. The functions and underlying mechanism were investigated using western blots, qRT-PCR, flow cytometry, and rescue experiments. TOM70 inhibition resulted in mtDNA damage and translocation to the cytoplasm from mitochondria due to the disruption of mitochondrial homeostasis. Further ex and in vivo findings also showed that the cGAS/STING/NLRP3 signaling pathway was activated by mtDNA and thereby malignant cells underwent pyroptosis, leading to enhanced immunogenicity of lung cancer cells in the presence of DHA. Nevertheless, DHA-induced mtDNA translocation and cGAS/STING/NLRP3 mobilization were synchronously attenuated when TOM70 was replenished. Finally, DHA was demonstrated to possess potent anti-lung cancer efficacy in vitro and in vivo. Taken together, these data confirm that TOM70 is an important target for DHA to disturb mitochondria homeostasis, which further activates STING and arouses pyroptosis to strengthen immunogenicity against lung cancer thereupon. The present study provides vital clues for phytomedicine-mediated anti-tumor therapy.

4.
Sci Rep ; 14(1): 7733, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565963

RESUMO

B-Myb has received considerable attention for its critical tumorigenic function of supporting DNA repair. However, its modulatory effects on chemotherapy and immunotherapy have rarely been reported in colorectal cancer. Bortezomib (BTZ) is a novel compound with chemotherapeutic and immunotherapeutic effects, but it fails to work in colorectal cancer with high B-Myb expression. The present study was designed to investigate whether B-Myb deletion in colorectal cancer could potentiate the immune efficacy of BTZ against colorectal cancer and to clarify the underlying mechanism. Stable B-Myb knockdown was induced in colorectal cancer cells, which increased apoptosis of the cancer cells relative to the control group in vitro and in vivo. We found that BTZ exhibited more favourable efficacy in B-Myb-defective colorectal cancer cells and tumor-bearing mice. BTZ treatment led to differential expression of genes enriched in the p53 signaling pathway promoted more powerful downstream DNA damage, and arrested cell cycle in B-Myb-defective colorectal cancer. In contrast, recovery of B-Myb in B-Myb-defective colorectal cancer cells abated BTZ-related DNA damage, cell cycle arrest, and anticancer efficacy. Moreover, BTZ promoted DNA damage-associated enhancement of immunogenicity, as indicated by potentiated expression of HMGB1 and HSP90 in B-Myb-defective cells, thereby driving M1 polarization of macrophages. Collectively, B-Myb deletion in colorectal cancer facilitates the immunogenic death of cancer cells, thereby further promoting the immune efficacy of BTZ by amplifying DNA damage. The present work provides an effective molecular target for colorectal cancer immunotherapy with BTZ.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Animais , Camundongos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular Imunogênica , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Apoptose
5.
Heliyon ; 10(5): e26734, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444476

RESUMO

Objectives: Facial asymmetry is a common problem seen in orthodontic clinics that may affect patient esthetics. In some instances, severe asymmetry that affects patient esthetics may cause psychological issues. An objective method is therefore required to help orthodontists identify asymmetry issues. Materials and methods: We used three-dimensional (3D) facial images and landmark-based anthropometric analysis to construct a 3D facial mask to evaluate asymmetry. The landmark coordinates were transformed using a symmetric 3D face model to evaluate the efficacy of this method. Patients with facial asymmetry were recruited to conduct mirror and overlap analysis to form color maps, which were used to verify the utility of the novel soft tissue landmark-based method. Results: The preliminary results demonstrated that the asymmetry evaluation method had a similar response rate compared to diagnosis using mirror and overlap 3D images, and could therefore identify 3D asymmetry problems. Conclusions: By using 3D facial scans and 3D anthropometric analysis, we developed a preliminary evaluation method that provides objective parameters to clinically evaluate patient facial asymmetry and aid in the diagnosis of asymmetric areas. Clinical relevance: This study presents a novel facial asymmetry diagnostic method that has the potential to aid clinical decisions during problem identification, treatment planning, and efficacy evaluation.

6.
JCI Insight ; 9(6)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358805

RESUMO

Suppressor of fused (SUFU) is widely regarded as a key negative regulator of the sonic hedgehog (SHH) morphogenic pathway and a known tumor suppressor of medulloblastoma (MB). However, we report here that SUFU expression was markedly increased in 75% of specimens compiled in a tissue array comprising 49 unstratified MBs. The SUFU and GLI1 expression levels in this MB array showed strong positive correlation, which was also identified in a large public data set containing 736 MBs. We further report that increasing Sufu gene dosage in mice caused preaxial polydactyly, which was associated with the expansion of the Gli3 domain in the anterior limb bud and heightened Shh signaling responses during embryonic development. Increasing Sufu gene dosage also led to accelerated cerebellar development and, when combined with ablation of the Shh receptor encoded by Patched1 (Ptch1), promoted MB tumorigenesis. These data reveal multifaceted roles of SUFU in promoting MB tumorigenesis by enhancing SHH signaling. This revelation clarifies potentially counterintuitive clinical observation of high SUFU expression in MBs and may pave way for novel strategies to reduce or reverse MB progression.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Polidactilia , Camundongos , Animais , Meduloblastoma/genética , Meduloblastoma/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transformação Celular Neoplásica/genética , Fatores de Transcrição , Neoplasias Cerebelares/genética , Polidactilia/genética
7.
J Org Chem ; 89(5): 3279-3291, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377542

RESUMO

The construction of 3,4-dihydroquinolone derivatives has attracted a considerable amount of attention due to their extensive applications in medicinal chemistry. In this study, we present the Pd-catalyzed [4+2] cycloaddition of vinyl benzoxazinanones with α-alkylidene succinimides for the efficient synthesis of 3,4-dihydroquinolones. This approach presents numerous advantages, including the ready availability of starting materials, mild reaction conditions without the use of additional bases, and a wide range of substrates. In particular, all of the desired products can be easily afforded in high yields (≤99%) and excellent diastereoselectivities (>20:1). The practicality and reliability of this strategy were demonstrated by the successful scale-up synthesis and subsequent straightforward synthetic transformations.

8.
Photodiagnosis Photodyn Ther ; 45: 103917, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042236

RESUMO

OBJECTIVE: Photodynamic therapy (PDT) primarily treats skin diseases or cancer by generating reactive oxygen species (ROS) to damage cellular DNA, yet drug resistance limits its application. To tackle this problem, the present study was carried out to improve the efficacy of chlorin e6 (Ce6)-PDT using Cepharanthine (CEP) as well as to reveal the potential molecular mechanism. MATERIALS AND METHODS: Lewis lung cancer cell line (LLC) was utilized as the cancer cell model. chlorin e6 (Ce6) acted as the photosensitizer to induce PDT. The in vitro anti-cancer efficacy was measured by CCK-8, Annexin-V/PI staining, and migration assay. The Ce6 uptake was observed using flow cytometry and confocal microscopy. The ROS generation was detected by the DCFH-DA probe. The analysis of MutT Homolog 1 (MTH1) expression, correlation, and prognosis in databases was conducted by bioinformatic. The MTH1 expression was detected through western blots (WB). DNA damage was assayed by WB, immunofluorescent staining, and comet assay. RESULTS: Ce6-PDT showed robust resistance in lung cancer cells under certain conditions, as evidenced by the unchanged cell viability and apoptosis. The subsequent findings confirmed that the uptake of Ce6 and MTH1 expression was enhanced, but ROS generation with laser irradiation was not increased in LLC, which indicated that the ROS scavenge may be the critical reason for resistance. Surprisingly, bioinformatic and in vitro experiments identified that MTH1, which could prevent the DNA from damage of ROS, was highly expressed in lung cancer and thereby led to the poor prognosis and could be further up-regulated by Ce6 PDT. CEP exhibited a dose-dependent suppressive effect on the lung cancer cells. Further investigations presented that CEP treatment boosted ROS production, thereby resulting in DNA double-strand breakage (DDSB) with activation of MTH1, indicating that CEP facilitated Ce6-PDT-mediated DNA damage. Finally, the combination of CEP and Ce6-PDT exhibited prominent ROS accumulation, MTH1 inhibition, and anti-lung cancer efficacy, which had synergistic pro-DNA damage properties. CONCLUSION: Collectively, highly expressed MTH1 and the failure of ROS generation lead to PDT resistance in lung cancer cells. CEP facilitates ROS generation of PDT, thereby promoting vigorous DNA damage, inactivating MTH1, alleviating PDT resistance, and ameliorating the anti-cancer efficacy of Ce6-PDT, provides a novel approach for augmented PDT.


Assuntos
Benzodioxóis , Benzilisoquinolinas , Neoplasias Pulmonares , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Dano ao DNA , DNA
9.
Exp Lung Res ; 49(1): 205-219, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-38044666

RESUMO

Objective: This study aimed to investigate the effects of stevioside (STE) on pulmonary fibrosis (PF) and the potential mechanisms. Methods: In this study, a mouse model of PF was established by a single intratracheal injection of bleomycin (BLM, 3 mg/kg). The experiment consisted of four groups: control group, BLM group, and STE treatment groups (STE 50 and 100 mg/kg). ELISA and biochemical tests were conducted to determine the levels of TNF-α, IL-1ß, IL-6, NO, hydroxyproline (HYP), SOD, GSH, and MDA. Histopathological changes and collagen deposition in lung tissues were observed by HE and Masson staining. Immunohistochemistry was performed to determine the levels of collagen I-, collagen III-, TGF-ß1- and p-Smad2/3-positive cells. Western blot analysis was used to measure the expression of epithelial-mesenchymal transition (EMT) markers, including α-SMA, vimentin, E-cadherin, and ZO-1, as well as proteins related to the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, nuclear transcription factor-κB (NF-κB) pathway, and TGF-ß1/Smad2/3 pathway in lung tissues. Results: STE significantly alleviated BLM-induced body weight loss and lung injury in mice, decreased HYP levels, and reduced the levels of collagen I- and collagen III-positive cells, thereby decreasing extracellular matrix (ECM) deposition. Moreover, STE markedly improved oxidative stress (MDA levels were decreased, while SOD and GSH activity were enhanced), the inflammatory response (the levels of TNF-α, IL-1ß, IL-6, and NO were reduced), and EMT (the expression of α-SMA and vimentin was downregulated, and the expression of E-cadherin and ZO-1 was upregulated). Further mechanistic analysis revealed that STE could activate the Nrf2 pathway and inhibit the NF-κB and TGF-ß1/Smad2/3 pathways. Conclusion: STE may alleviate oxidative stress by activating the Nrf2 pathway, suppress the inflammatory response by downregulating the NF-κB pathway, and inhibit EMT progression by blocking the TGF-ß1/Smad2/3 pathway, thereby improving BLM-induced PF.


Assuntos
Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , NF-kappa B , Fator de Crescimento Transformador beta1/metabolismo , Bleomicina/efeitos adversos , Vimentina , Fator 2 Relacionado a NF-E2 , Fator de Necrose Tumoral alfa , Interleucina-6 , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Caderinas , Superóxido Dismutase
10.
Mikrochim Acta ; 190(10): 413, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37740757

RESUMO

A stable and innovative composite film-modified electrode based on Dawson polyoxometalates H8P2Mo16V2O62 (P2Mo16V2) and ionic liquid (BMIMBr)-decorated carbon nanotubes, annotated as PEI/(P2Mo16V2/BMIMBr-CNTs)8, has been constructed by using the layer-by-layer self-assembly (LBL) method for the determination of L-tyrosine. The combination of three active components not only offers higher conductivity to facilitate rapid electron transfer, but also avoids the accumulation of P2Mo16V2 to expand the contact area and increase the reactive active sites. The modified electrode exhibits outstanding sensing performance for determination of Tyr with wide linear determination range of 5.8×10-7 M ~ 1.2×10-4 M, low determination limit of 1.7×10-7M (S/N=3), high selectivity for common interferences, and excellent stability at the potential of +0.78 V (vs. Ag/AgCl (3 M KCl)). The relative standard deviation (RSD) of 4.3% for five groups of parallel experiments shows the satisfactory repeatability of PEI/(P2Mo16V2/BMIMBr-CNTs)8. In addition, for determination of Tyr, the PEI/(P2Mo16V2/BMIMBr-CNTs)8 shows good recoveries of 98.8-99.8% in meat floss, which can be feasible in practical application.


Assuntos
Líquidos Iônicos , Nanotubos de Carbono , Tirosina , Eletrodos
11.
Croat Med J ; 64(4): 243-255, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37654036

RESUMO

AIM: To evaluate the effect of lycopene on carbon tetrachloride (CCl4)-induced hepatic fibrosis and elucidate the underlying mechanism. METHODS: Male rats were randomly assigned to the control group, CCl4 group, and lycopene group. The CCl4 group was intraperitoneally injected with CCl4 twice per week for 12 weeks to induce hepatic fibrosis. The control group was intraperitoneally injected with olive oil. Lycopene was orally administered during CCl4 treatment. Body weight and liver weight were recorded. Liver function was assessed. Biomarkers of oxidative stress and inflammatory factors were measured. Histological changes and collagen expression were evaluated. The expression of TGF-ß1, α-SMA, HO-1, SIRT 1, REDD1, SHP2, P62, and LC3 in the liver was determined, as well as the levels of phosphorylated NF-κB and IκB α. RESULTS: Lycopene significantly reduced the liver/body weight ratio, and AST (P=0.001) and ALT levels (P=0.009). It also significantly increased CAT and SOD activities (P<0.001) and decreased MDA content (P<0.001), IL-6 (P<0.001), and TNF-α (P=0.001). Histological analysis demonstrated that lycopene improved lobular architecture and decreased collagen expression. It also decreased the expression of TGF-ß1, α-SMA, P62, and SHP2, and increased the ratio of LC3 II/I, as well as Beclin 1 and REDD1 expression. In addition, it reduced NF-κB and IκB-α phosphorylation, and elevated the levels of HO-1, SIRT 1, and PGC 1α. CONCLUSION: Lycopene attenuates CCl4-induced hepatic fibrosis because of its effect on autophagy by reducing oxidative stress and inflammation.


Assuntos
Tetracloreto de Carbono , Fator de Crescimento Transformador beta1 , Masculino , Animais , Ratos , Tetracloreto de Carbono/toxicidade , Licopeno/farmacologia , Licopeno/uso terapêutico , NF-kappa B , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Autofagia , Peso Corporal
12.
Adv Healthc Mater ; 12(28): e2301561, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567571

RESUMO

Infiltration of tumor-associated macrophages (TAM) characterized by an M2 phenotype is an overriding feature in malignant tumors. Reprogramming TAM is the most cutting-edge strategy for cancer therapy. In the present study, an iron-based metal-organic framework (MOF) nanoreactor loaded with dihydroartemisinin (DHA) is developed, which provides high uptake by TAM and retains their viability, thus effectively addressing the inefficiency of the DHA at low concentrations. Impressively, DHA@MIL-101 can selectively accumulate in tumor tissues and remodel TAM to the M1 phenotype. The results of RNA sequencing further suggest that this nanoreactor may regulate ferroptosis, a DNA damage signaling pathway in TAM. Indeed, the outcomes confirm that DHA@MIL-101 triggers ferroptosis in TAM. In addition, the findings reveal that DNA damage induced by DHA nanoreactors activates the intracellular cGAS sensor, resulting in the binding of STING to IRF3 and thereby up-regulating the immunogenicity. In contrast, blocking ferroptosis impairs DHA@MIL-101-induced activation of STING signaling and phenotypic remodeling. Finally, it is shown that DHA nanoreactors deploy anti-tumor immunotherapy through ferroptosis-mediated TAM reprogramming. Taken together, immune efficacy is achieved through TAM's remodeling by delivering DHA and iron ions into TAM using nanoreactors, providing a novel approach for combining phytopharmaceuticals with nanocarriers to regulate the immune microenvironment.


Assuntos
Ferroptose , Macrófagos , Imunoterapia , Ferro , Nanotecnologia , Microambiente Tumoral
13.
Mater Today Bio ; 21: 100732, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37521005

RESUMO

Eukaryotic expression systems are frequently employed for the production of recombinant proteins as therapeutics as well as research tools. Among which mammalian cell protein expression approach is the most powerful one, which can express complex proteins or genetic engineered biological drugs, such as PD-1. However, the high expense, which partially derives from its low protein yielding efficiency, limited the further application of such approach in large scale production of target proteins. To address this issue, we proposed a novel technique to promote the protein production efficiency of mammal cells without using conventional genetic engineered approaches. By placing 293T cells in a hydrogel 3D cell culture platform and adjusting the stress relaxation of the matrix hydrogel, cells formed multicellular spheroids by self-organization. In particular, the multicellular spheroids have a significantly enhanced ability to transiently express multiple proteins (SHH-N, PD-1 and PDL-1). We also examined in detail the mechanism underlying this phenomenon, and found that the reorganization of cytoskeleton during spheroids formation enhances the translation process of protein by recruiting ribosomes. Overall, this finding provides a novel approach for subsequent improvement of large-scale mammalian protein expression cell systems.

14.
Photodiagnosis Photodyn Ther ; 42: 103558, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37030434

RESUMO

OBJECTIVE: Photodynamic therapy (PDT) may be an effective therapeutic strategy for colorectal cancer at an early stage. However, malignant cells' resistance to photodynamic agents can lead to treatment failure. MYBL2 (B-Myb) is an oncogene in colorectal carcinogenesis and development, for which little research has focused on its effect on drug resistance. MATERIALS AND METHODS: In the present work, a colorectal cancer cell line with a stable knockdown of MYBL2 (ShB-Myb) was constructed first. Chlorin e6 (Ce6) was utilized to induced PDT. The anti-cancer efficacy was measured by CCK-8, PI staining, and Western blots. The drug uptake of Ce6 was assayed by flow cytometry and confocal microscopy. The ROS generation was detected by the CellROX probe. DDSB and DNA damage were assayed through comet experiment and Western blots. The over-expression of MYBL2 was conducted by MYBL2 plasmid. RESULTS: The findings indicated that the viability of ShB-Myb treated with Ce6-PDT was not decreased compared to control SW480 cells (ShNC), which were resistant to PDT. Further investigation revealed reduced photosensitizer enrichment and mitigated oxidative DNA damage in colorectal cancer cells with depressed MYBL2. It turned out that SW480 cells knocking down MYBL2 showed phosphorylation of NF-κB and led to up-regulation of ABCG2 expression thereupon. When MYBL2 was replenished back in MYBL2-deficient colorectal cancer cells, phosphorylation of NF-κB was blocked and ABCG2 expression up-regulation was suppressed. Additionally, replenishment of MYBL2 also increased the enrichment of Ce6 and the efficacy of PDT. CONCLUSION: In summary, MYBL2 absence in colorectal cancer contributes to drug resistance by activating NF-κB to up-regulate ABCG2 and thereby leading to photosensitizer Ce6 efflux. This study provides a novel theoretical basis and strategy for how to effectively improve the anti-tumor efficacy of PDT.


Assuntos
Clorofilídeos , Neoplasias Colorretais , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fotoquimioterapia/métodos , Regulação para Cima , NF-kappa B/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Porfirinas/farmacologia , Linhagem Celular Tumoral , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias , Transativadores/metabolismo , Proteínas de Ciclo Celular/metabolismo
15.
BMC Geriatr ; 23(1): 84, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755225

RESUMO

OBJECTIVE: This study aimed to explore the relationship between the sarcopenia index (SI) and the risk of pneumonia in hospitalized patients with acute alcohol withdrawal syndrome (AWS). STUDY DESIGN: We have performed a retrospective study of individuals with AWS from a teaching hospital in western China. Patients' data were retrieved from the medicinal record databases. Patients' primary (upon admission) blood serum creatinine (Cr) and cystatin C (CysC) levels were incorporated into the records. Participants were separated into low and high SI cohorts based on the three-quarter digit of SI (SI = serum Cr/serum CysC ratio × 100). The association between SI and the risk of pneumonia in hospitalized patients with AWS was assessed by logistic regression analysis. RESULT: Three hundred and twelve patients with acute AWS were included in this retrospective analysis. Among hospitalized patients with acute AWS, the incidence of pneumonia was 13.78%. The average median age of acute AWS patients with pneumonia was 55.28 (10.65) years, and the mean age of acute AWS individuals without pneumonia was 51.23 (10.08) years. In the univariate analysis, the high SI group (SI > 87.91) had a lower incidence of pneumonia than the low SI group (SI ≤ 87.91) (high SI vs. low SI, 6.41% vs. 16.24%, p = 0.029). Further logistic regression analysis showed that the high SI group demonstrated a poorer risk of pneumonia (OR = 0.353, 95%CI: 0.134-0.932, p = 0.036). After adjusting for possible confounders, the risk of pneumonia remained low in the high SI group (OR = 0.358, 95%CI: 0.132-0.968, p = 0.043). CONCLUSION: Our results showed that SI was linked with the risk of pneumonia in hospitalized individuals with acute AWS. We further suggest that it could be a pneumonia risk factor, especially in medical centers where sarcopenia diagnosis is unavailable.


Assuntos
Alcoolismo , Pneumonia , Sarcopenia , Síndrome de Abstinência a Substâncias , Humanos , Alcoolismo/complicações , Alcoolismo/diagnóstico , Alcoolismo/epidemiologia , Prognóstico , Estudos Retrospectivos , Sarcopenia/diagnóstico , Sarcopenia/epidemiologia , Pneumonia/complicações , Pneumonia/diagnóstico
16.
Phytomedicine ; 112: 154682, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739636

RESUMO

BACKGROUND: The immunosuppressive microenvironment of lung cancer serves as an important endogenous contributor to treatment failure. The present study aimed to demonstrate the promotive effect of DHA on immunogenic cell death (ICD) in lung cancer as well as the mechanism. METHODS: The lewis lung cancer cells (LLC), A549 cells and LLC-bearing mice were applied as the lung cancer model. The apoptosis, ferroptosis assay, western blotting, immunofluorescent staining, qPCR, comet assay, flow cytometry, confocal microscopy, transmission electron microscopy and immunohistochemistry were conducted to analyze the functions and the underlying mechanism. RESULTS: An increased apoptosis rate and immunogenicity were detected in DHA-treated LLC and tumor grafts. Further findings showed DHA caused lipid peroxide (LPO) accumulation, thereby initiating ferroptosis. DHA stimulated cellular endoplasmic reticulum (ER) stress and DNA damage simultaneously. However, the ER stress and DNA damage induced by DHA could be abolished by ferroptosis inhibitors, whose immunogenicity enhancement was synchronously attenuated. In contrast, the addition of exogenous iron ions further improved the immunogenicity induced by DHA accompanied by enhanced ER stress and DNA damage. The enhanced immunogenicity could be abated by ER stress and DNA damage inhibitors as well. Finally, DHA activated immunocytes and exhibited excellent anti-cancer efficacy in LLC-bearing mice. CONCLUSIONS: In summary, the current study demonstrates that DHA triggers ferroptosis, facilitating the ICD of lung cancer thereupon. This work reveals for the first time the effect and underlying mechanism by which DHA induces ICD of cancer cells, providing novel insights into the regulation of the immune microenvironment for cancer immunotherapy by Chinese medicine phytopharmaceuticals.


Assuntos
Carcinoma Pulmonar de Lewis , Ferroptose , Neoplasias Pulmonares , Animais , Camundongos , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Estresse do Retículo Endoplasmático , Imunoterapia , Dano ao DNA , Microambiente Tumoral
17.
Int Immunopharmacol ; 115: 109661, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36608440

RESUMO

Suppression of the immune microenvironment is an important endogenous contributor to treatment failure in lung cancer. Photodynamic therapy (PDT) is widely used in the treatment of malignant tumors owing to its photo-selectivity and minimal side effects. Some studies have shown the ability of photodynamic action not only to cause photo-cytotoxicity to tumor cells but also to induce immunogenic cell death (ICD). However, the mechanism by which PDT enhances tumor immunogenicity is poorly understood. The present study aimed to explore the immunogenicity effect of PDT on lung cancer and to reveal the underlying mechanism. First, we searched for effective conditions for PDT-induced apoptosis in lung cancer cells. Just as expected, chlorin e6 (Ce6) PDT could enhance the immunogenicity of lung cancer cells alongside the induction of apoptosis, characterized by up-regulation of CRT, HSP90, HMGB1 and MHC-I. Further results showed the generation of ROS by Ce6 PDT under the above conditions, which is an oxidative damaging agent. Simultaneously, PDT induced endoplasmic reticulum (ER) stress in cells, as evidenced by enhanced Tht staining and up-regulated CHOP and GRP78 expression. Moreover, PDT led to DNA damage response (DDR) as well. However, the redox inhibitor NAC abolished the ER stress and DDR caused by PDT. More importantly, NAC also attenuated PDT-induced improvement of immunogenicity in lung cancer. On this basis, the PDT-induced CRT up-regulation was found to be attenuated in response to inhibition of ER stress. In addition, PDT-induced increase in HMGB1 and HSP90 release was blocked by inhibition of DDR. In summary, Ce6 PDT could produce ROS under certain conditions, which leads to ER stress that promotes CRT translocation to the cell membrane, and the resulting DNA damage causes the expression and release of nuclear HMGB1 and HSP90, thereby enhancing the immunogenicity of lung cancer. This current study elucidates the mechanism of PDT in ameliorating the immunogenicity of lung cancer, providing a rationale for PDT in regulating the immune microenvironment for the treatment of malignant tumors.


Assuntos
Proteína HMGB1 , Neoplasias Pulmonares , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio , Morte Celular Imunogênica , Neoplasias Pulmonares/tratamento farmacológico , Estresse Oxidativo , Estresse do Retículo Endoplasmático , Dano ao DNA , Oxirredução , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Microambiente Tumoral
18.
Platelets ; 34(1): 2166677, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36719251

RESUMO

In our previous study, target drug delivery and treatment of malignant tumors have been achieved by using platelets as carriers loading nano-chemotherapeutic agents (ND-DOX). However, drug release from ND-DOX-loaded platelets is dependent on negative platelet activation by tumor cells, whose activation is not significant enough for the resulting drug release to take an effective anti-tumor effect. Exploring strategies to proactively manipulate the controlled release of drug-laden platelets is imperative. The present study innovatively revealed that photodynamic action can activate platelets in a spatiotemporally controlled manner. Consequently, based on the previous study, platelets were used to load iron oxide-polyglycerol-doxorubicin-chlorin e6 composites (IO-PG-DOX-Ce6), wherein the laser-triggered drug release ability and anti-tumor capability were demonstrated. The findings suggested that IO-PG-DOX-Ce6 could be stably loaded by platelets in high volume without any decrease in viability. Importantly and interestingly, drug-loaded platelets were significantly activated by laser irradiation, characterized by intracellular ROS accumulation and up-regulation of CD62p. Additionally, scanning electron microscopy (SEM) and hydrated particle size results also showed a significant aggregation response of laser irradiated-drug-loaded platelets. Further transmission electron microscopy (TEM) measurements indicated that the activated platelets released extracellularly their cargo drug after laser exposure, which could be taken up by co-cultured tumor cells. Finally, the co-culture model of drug-loaded platelets and tumor cells proved that laser-triggered delivery system of platelets could effectively damage the DNA and promote apoptosis of tumor cells. Overall, the present study discovers a drug-loaded platelets delivery using photodynamic effect, enabling laser-controlled intelligent drug delivery and anti-tumor therapy, which provides a novel and feasible approach for clinical application of cytopharmaceuticals.


What is the context?1. Platelets were applied to load IO-PG-DOX-Ce6, wherein the laser-triggered drug release and anti-tumor effect were investigated in vitro.2. The findings indicated that IO-PG-DOX-Ce6 could be stably loaded by platelets in high volume without any decrease in viability, which may attribute to the activation of autophagy in platelets.3. IO-PG-DOX-Ce6-loaded platelets could be significantly activated by laser irradiation (690 nm).4. Activated platelets released extracellularly their cargo drug after laser exposure, which could be taken up by co-cultured tumor cells5. The co-culture model of drug-loaded platelets and tumor cells proved that the laser-triggered delivery system of platelets could effectively damage the DNA and promote apoptosis of tumor cells.What is new?1. Platelets could be utilized as the vehicle to load photosensitizer-loaded-nano-drug.2. Photodynamic action can activate platelets in a spatiotemporally controlled manner, which could be a tool to regulate the activation of platelets.3. The laser-triggered activation of drug-loaded platelets allows for target release of cargo.4. The limitation of the current research is that only in vitro experiments were carried out to demonstrate our conclusions.What is impact?The present work provides a novel and feasible approach for the clinical application of cytopharmaceuticals.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Sistemas de Liberação de Medicamentos/métodos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Lasers
19.
Artigo em Inglês | MEDLINE | ID: mdl-36045660

RESUMO

Xin-Ji-Er-Kang (XJEK) inhibited cardiovascular remodeling in hypertensive mice in our previous studies. We hypothesized that XJEK may prevent isoproterenol (ISO)-induced myocardial hypertrophy (MH) in mice by ameliorating oxidative stress (OS) through a mechanism that may be related to the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1(HO-1) pathways. Forty SPF male Kunming mice were randomized into 5 groups (n = 8 mice per group): control group, MH group, MH + different doses of XJEK (7.5 g/kg/day and 10 g/kg/day), and MH + metoprolol (60 mg/kg/day). On the eighth day after drug treatment, electrocardiogram (ECG) and echocardiography were performed, the mice were sacrificed, and blood and heart tissues were collected for further analysis. XJEK administration markedly ameliorated cardiovascular remodeling (CR), as manifested by a decreased HW/BW ratio and CSA and less collagen deposition after MH. XJEK administration also improved MH, as evidenced by decreased atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and ß-myosin heavy chain (ß-MHC) levels. XJEK also suppressed the decreased superoxide dismutase (SOD) and catalase (CAT) activities and increased malondialdehyde (MDA) levels in serum of mice with MH. XJEK-induced oxidative stress may be related to potentiating Nrf2 nuclear translocation and HO-1 expression compared with the MH groups. XJEK ameliorates MH by activating the Nrf2/HO-1 signaling pathway, suggesting that XJEK is a potential treatment for MH.

20.
Exp Ther Med ; 24(4): 608, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36160891

RESUMO

Hepatic fibrosis is a global health problem, with increasing evidence demonstrating that oxidative stress serves a pivotal role in fibrogenesis. Riboflavin is a vital nutrient in the human and animal diet, which enhances the activity of antioxidant enzymes and ameliorates oxidative stress. The present study evaluated the effect of riboflavin on liver fibrosis and the mechanisms underlying this process. Rats were subcutaneously injected with carbon tetrachloride (CCl4) dissolved in sterile olive oil twice per week to induce hepatic fibrosis. The effect of riboflavin on CCl4-induced liver fibrosis was then assessed. Blood samples and liver tissues were collected and analyzed. The liver tissue morphological changes, immunohistochemical analysis, levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in the mitochondria, and the protein expression levels of α-smooth muscle actin (α-SMA), transforming growth factor-ß1 (TGF-ß1), extracellular signal-regulated kinase (ERK), p38, c-Jun N-terminal kinase (JNK), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and heme oxygenase 1 (HO-1) in the liver were also analyzed. The results demonstrated that riboflavin treatment significantly decreased the levels of alanine transaminase and aspartate transaminase in the serum, increased SOD activity and modulated the MDA level in the mitochondria. Furthermore, riboflavin significantly inhibited the CCl4-induced, upregulated protein expression levels of phosphorylated (p)-ERK, p-p38, p-JNK, TGF-ß1 and α-SMA. Moreover, riboflavin significantly increased the expression of p-AMPK, PGC-1α and HO-1 in the liver tissue. These results suggested that riboflavin delays CCl4-induced hepatic fibrosis by enhancing the mitochondrial function via the AMPK/PGC-1α/HO-1 and mitogen-activated protein kinase signaling pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...