RESUMO
BACKGROUND: Rubber plant (Hevea brasiliensis) is one of the major sources of latex. Somatic embryogenesis (SE) is a promising alterative to its propagation by grafting and seed. Phytohormones have been shown to influence SE in different plant species. However, limited knowledge is available on the role of phytohormones in SE in Hevea. The anther cultures of two Hevea genotypes (Yunyan 73477-YT and Reken 628-RT) with contrasting SE rate were established and four stages i.e., anthers (h), anther induced callus (y), callus differentiation state (f), and somatic embryos (p) were studied. UPLC-ESI-MS/MS and transcriptome analyses were used to study phytohormone accumulation and related expression changes in biosynthesis and signaling genes. RESULTS: YT showed higher callus induction rate than RT. Of the two genotypes, only YT exhibited successful SE. Auxins, cytokinins (CKs), abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), gibberellins (GAs), and ethylene (ETH) were detected in the two genotypes. Indole-3-acetic acid (IAA), CKs, ABA, and ETH had notable differences in the studied stages of the two genotypes. The differentially expressed genes identified in treatment comparisons were majorly enriched in MAPK and phytohormone signaling, biosynthesis of secondary metabolites, and metabolic pathways. The expression changes in IAA, CK, ABA, and ETH biosynthesis and signaling genes confirmed the differential accumulation of respective phytohormones in the two genotypes. CONCLUSION: These results suggest potential roles of phytohormones in SE in Hevea.
Assuntos
Hevea , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Hevea/genética , Hevea/metabolismo , Espectrometria de Massas em Tandem , Perfilação da Expressão Gênica , Ácido Abscísico/metabolismo , Citocininas/metabolismo , Genótipo , Desenvolvimento EmbrionárioRESUMO
Catalase (CAT) is one of the key enzymes involved in antioxidant defense systems and mainly scavenges H2O2 and plays a vital role in plant growth, development, and various adverse stresses. To date, a systematic study of the CAT gene family in rubber tree has not been reported. In this study, five HbCAT gene family members were identified from the rubber tree genome, and these were mainly clustered into two subfamilies. Gene structure and motif analysis showed that exon-intron and motif patterns were conserved across different plant species. Sequence analysis revealed that HbCAT proteins contain one active catalytic site, one heme-ligand signature sequence, three conserved amino acid residues (His, Tyr, and Asn), and one peroxisome-targeting signal 1 (PTS1) sequence. Fragment duplication is a selection pressure for the evolution of the HbCAT family based on Ka/Ks values. Analysis of cis-acting elements in the promoters indicated that HbCAT gene expression might be regulated by abscisic acid (ABA), salicylic acid (SA), and MYB transcription factors; furthermore, these genes might be involved in plant growth, development, and abiotic stress responses. A tissue-specific expression analysis showed that HbCATs gradually increased with leaf development and were highly expressed in mature leaves. Gene expression profiling exhibited the differential expression of the HbCATs under cold, heat, drought, and NaCl stresses. Our results provide comprehensive information about the HbCAT gene family, laying the foundation for further research on its function in rubber tree.