Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Virol ; 98(4): e0160323, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38526054

RESUMO

mRNA-1647 is an investigational mRNA-based vaccine against cytomegalovirus (CMV) that contains sequences encoding the CMV proteins glycoprotein B and pentamer. Humoral and cellular immune responses were evaluated in blood samples collected from healthy CMV-seropositive and CMV-seronegative adults who participated in a phase 1 trial of a three-dose series of mRNA-1647 (NCT03382405). Neutralizing antibody (nAb) titers against fibroblast and epithelial cell infection in sera from CMV-seronegative mRNA-1647 recipients were higher than those in sera from control CMV-seropositive samples and remained elevated up to 12 months after dose 3. nAb responses elicited by mRNA-1647 were comparable across 14 human CMV (HCMV) strains. Frequencies of antigen-specific memory B cells increased in CMV-seropositive and CMV-seronegative participants after each mRNA-1647 dose and remained elevated for up to 6 months after dose 3. mRNA-1647 elicited robust increases in frequencies and polyfunctionality of CD4+ T helper type 1 and effector CD8+ T cells in samples from CMV-seronegative and CMV-seropositive participants after stimulation with HCMV-specific peptides. The administration of three doses of mRNA-1647 to healthy adults elicited high nAb titers with wide-breadth, long-lasting memory B cells, and strong polyfunctional T-cell responses. These findings support further clinical development of the mRNA-1647 vaccine against CMV.IMPORTANCECytomegalovirus (CMV), a common virus that can infect people of all ages, may lead to serious health problems in unborn babies and those with a weakened immune system. Currently, there is no approved vaccine available to prevent CMV infection; however, the investigational messenger RNA (mRNA)-based CMV vaccine, mRNA-1647, is undergoing evaluation in clinical trials. The current analysis examined samples from a phase 1 trial of mRNA-1647 in healthy adults to better understand how the immune system reacts to vaccination. Three doses of mRNA-1647 produced a long-lasting immune response, thus supporting further investigation of the vaccine in the prevention of CMV infection.CLINICAL TRIALSRegistered at ClinicalTrials.gov (NCT03382405).


Assuntos
Infecções por Citomegalovirus , Vacinas contra Citomegalovirus , Adulto , Humanos , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/imunologia , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/imunologia , RNA Mensageiro/genética
2.
Sci Total Environ ; 914: 169844, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190915

RESUMO

The synergistic strategy for fine particulate matter (PM2.5) and O3 pollution prevention and control has emerged as a pivotal approach in combating air pollution. Volatile organic compounds (VOCs) serve as crucial precursors to both O3 and secondary organic aerosols (SOAs), with motor vehicles representing one of their significant sources. In this study, a standard for establishing a database of VOC species emission factors for motor vehicles was developed, and a database containing 134 VOC species was constructed through field tests and literature surveys. The VOC emissions of light-duty gasoline passenger vehicles (LDGPVs) comprised primarily alkanes and aromatics. The VOC emissions of light-duty diesel trucks (LDDTs) comprised mostly alkanes. Regarding low-speed trucks, 3-wheel vehicles, medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs), their VOC emissions comprised mainly oxygenated volatile organic compounds (OVOCs). The update of emission standards resulted in a reduction in VOC species emission factors while altering the composition of VOCs. Attention should be directed toward isopentane, benzene and dichloromethane emitted by LDGPVs, dodecane, undecane, ethene and propene emitted by LDDTs, and acetaldehyde emitted by HDDTs. VOC species originating from LDGPVs were more dispersed than those originating from LDDTs and HDDTs. In addition, variations in VOC species were observed among motor vehicles with different fuel types. Toluene, ethene, benzene, m,p-xylene, isopentane, hexanal, ethyne and 1,2,4-trimethylbenzene were the predominant VOC species emitted by gasoline vehicles. Diesel vehicles emitted mainly dodecane, formaldehyde, propene, undecane, acetaldehyde, ethene, decane and benzene. The results could enhance our comprehension of the emission characteristics of VOC species originating from motor vehicles and provide data support and a scientific foundation for achieving synergistic PM2.5 and O3 pollution prevention and control.

3.
Langmuir ; 40(1): 915-926, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38154048

RESUMO

High-efficiency dye desalination is crucial in the textile industry, considering its importance for human health, safe aquatic ecological systems, and resource recovery. In order to solve the problem of effective separation of univalent salt and ionic dye under the condition of high salt, ionic hyperbranched poly(amido-amine) (HBPs) were synthesized based on a simple and scalable one-step polycondensation method and then incorporated into the polyamide (PA) selective layers to construct charged nanochannels through interfacial polymerization (IP) on the surface of a polyvinyl chloride ultrafiltration (PVC-UF) hollow fiber membrane. Both the internal nanopores of HBPs (internal nanochannels) and the interfacial voids between HBPs and the PA matrix (external nanochannels) can be regarded as a fast water molecule transport pathway, while the terminal ionic groups of ionic HBPs endow the nanochannels with charge characteristics for improving ionic dye/salt selectivities. The permeate fluxes and dye/salt selectivities of HBP-TAC/PIP (57.3 L m-2 h-1 and rhodamine B (RB)/NaCl selectivity of 224.0) and HBP-PS/PIP (63.7 L m-2 h-1 and lemon yellow (LY)/NaCl selectivity of 664.0) membranes under 0.4 MPa operation pressure are much higher than PIP-only and HBP-NH2/PIP membranes. At the same time, this project also studied the membrane desalination process in a simulated high-salinity dye/salt mixture system to provide a theoretical basis and technical support for the actual dye desalination process.

4.
Front Plant Sci ; 14: 1272313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37877084

RESUMO

Biodiversity plays important roles in ecosystem functions and genetic diversity is a key component of biodiversity. While effects of genetic diversity on ecosystem functions have been extensively documented, no study has tested how genetic diversity of plants influences greenhouse gas fluxes from plant-soil systems. We assembled experimental populations consisting of 1, 4 or 8 genotypes of the clonal plant Hydrocotyle vulgaris in microcosms, and measured fluxes of CO2 and CH4 from the microcosms. The fluxes of CO2 and CO2 equivalent from the microcosms with the 1-genotype populations of H. vulgaris were significantly lower than those with the 4- and 8-genotype populations, and such an effect increased significantly with increasing the growth period. The cumulative CO2 flux was significantly negatively related to the growth of the H. vulgaris populations. However, genotypic diversity did not significantly affect the flux of CH4. We conclude that genotypic diversity of plant populations can influence CO2 flux from plant-soil systems. The findings highlight the importance of genetic diversity in regulating greenhouse gas fluxes.

5.
Biology (Basel) ; 12(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627030

RESUMO

Macrobenthos is widely used as an indicator of ecological health in marine monitoring and assessment. The present study aimed to characterize the interrelationships between the distribution of the macrobenthos community and environmental factors near Xiaoqing Estuary, Laizhou Bay. Responses of species richness to environmental factors were studied using the generalized additive model (GAM) and the Margalef diversity index (dM) as indicators of species diversity instead of individual indicator species. Six factors were selected in the optimal model by stepwise regression: sediment factors (organic matter, phosphate, nitrate nitrogen, and ammonium nitrogen) and water factors (salinity, and ammonium nitrogen). The response curves generated by the GAM showed a unimodal relationship among taxa diversity, salinity in water, and sediment organic matter. dM was positively correlated with ammonium nitrogen in water and was negatively correlated with phosphate in the sediment. The model optimized by forward stepwise optimization explained 92.6% of the Margalef diversity index with a small residual (2.67). The model showed good performance, with the measured dM strongly correlated with the predicted dM (Pearson R2 = 0.845, p < 0.05). The current study examined the combined influence of multiple eco-factors on macrobenthos, and the Margalef diversity index of macrobenthos was predicted by the GAM model in a salinity-stressed estuary.

6.
Environ Sci Technol ; 57(28): 10308-10318, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37419883

RESUMO

Nonroad agricultural machinery (NRAM) emissions constitute a significant source of air pollution in China. Full-volatility organics originating from 19 machines under 6 agricultural activities were measured synchronously. The diesel-based emission factors (EFs) for full-volatility organics were 4.71 ± 2.78 g/kg fuel (average ± standard deviation), including 91.58 ± 8.42% volatile organic compounds (VOCs), 7.94 ± 8.16% intermediate-volatility organic compounds (IVOCs), 0.28 ± 0.20% semivolatile organic compounds (SVOCs), and 0.20 ± 0.16% low-volatility organic compounds (LVOCs). Full-volatility organic EFs were significantly reduced by stricter emission standards and were the highest under pesticide spraying activity. Our results also demonstrated that combustion efficiency was a potential factor influencing full-volatility organic emissions. Gas-particle partitioning in full-volatility organics could be affected by multiple factors. Furthermore, the estimated secondary organic aerosol formation potential based on measured full-volatility organics was 143.79 ± 216.80 mg/kg fuel and could be primarily attributed to higher-volatility-interval IVOCs (bin12-bin16 contributed 52.81 ± 11.58%). Finally, the estimated emissions of full-volatility organics from NRAM in China (2021) were 94.23 Gg. This study provides first-hand data on full-volatility organic EFs originating from NRAM to facilitate the improvement of emission inventories and atmospheric chemistry models.


Assuntos
Poluentes Atmosféricos , Praguicidas , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Aerossóis/análise
7.
PLoS Comput Biol ; 19(7): e1010770, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37471455

RESUMO

While blood gene signatures have shown promise in tuberculosis (TB) diagnosis and treatment monitoring, most signatures derived from a single cohort may be insufficient to capture TB heterogeneity in populations and individuals. Here we report a new generalized approach combining a network-based meta-analysis with machine-learning modeling to leverage the power of heterogeneity among studies. The transcriptome datasets from 57 studies (37 TB and 20 viral infections) across demographics and TB disease states were used for gene signature discovery and model training and validation. The network-based meta-analysis identified a common 45-gene signature specific to active TB disease across studies. Two optimized random forest regression models, using the full or partial 45-gene signature, were then established to model the continuum from Mycobacterium tuberculosis infection to disease and treatment response. In model validation, using pooled multi-cohort datasets to mimic the real-world setting, the model provides robust predictive performance for incipient to active TB risk over a 2.5-year period with an AUROC of 0.85, 74.2% sensitivity, and 78.3% specificity, which approximates the minimum criteria (>75% sensitivity and >75% specificity) within the WHO target product profile for prediction of progression to TB. Moreover, the model strongly discriminates active TB from viral infection (AUROC 0.93, 95% CI 0.91-0.94). For treatment monitoring, the TB scores generated by the model statistically correlate with treatment responses over time and were predictive, even before treatment initiation, of standard treatment clinical outcomes. We demonstrate an end-to-end gene signature model development scheme that considers heterogeneity for TB risk estimation and treatment monitoring.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose/genética , Transcriptoma/genética , Resultado do Tratamento , Progressão da Doença
8.
Eur J Med Chem ; 257: 115392, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37269667

RESUMO

The transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel that senses irritant chemicals. Its activation is closely associated with pain, inflammation, and pruritus. TRPA1 antagonists are promising treatments for these diseases, and there has been a recent upsurge in their application to new areas such as cancer, asthma, and Alzheimer's disease. However, due to the generally disappointing performance of TRPA1 antagonists in clinical studies, scientists must pursue the development of antagonists with higher selectivity, metabolic stability, and solubility. Moreover, TRPA1 agonists provide a deeper understanding of activation mechanisms and aid in antagonist screening. Therefore, we summarize the TRPA1 antagonists and agonists developed in recent years, with a particular focus on structure-activity relationships (SARs) and pharmacological activity. In this perspective, we endeavor to keep abreast of cutting-edge ideas and provide inspiration for the development of more effective TRPA1-modulating drugs.


Assuntos
Canais de Potencial de Receptor Transitório , Canais de Potencial de Receptor Transitório/metabolismo , Canal de Cátion TRPA1/metabolismo , Anquirinas/metabolismo , Proteínas do Citoesqueleto/metabolismo
9.
J Environ Sci (China) ; 124: 846-859, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182188

RESUMO

Emissions of carbonyl compounds from agricultural machines cannot be ignored. Carbonyl compounds can cause the formation of ozone (O3) and secondary organic aerosols, which can cause photochemical smog to form. In this study, 20 agricultural machines were tested using portable emission measurement system (PEMS) under real-world tillage processes. The exhaust gases were sampled using 2,4-dinitrophenylhydrazine cartridges, and 15 carbonyl compounds were analyzed by high-performance liquid chromatography. Carbonyl compound emission factors for agricultural machines were 51.14-3315.62 mg/(kg-fuel), and were 2.58 ± 2.05, 0.86 ± 1.07 and 0.29 ± 0.20 g/(kg-fuel) for China 0, China II and China III emission standards, respectively. Carbonyl compound emission factor for sowing seeds of China 0 agricultural machines was 3.32 ± 1.73 g/(kg-fuel). Formaldehyde, acetaldehyde and acrolein were the dominant carbonyl compounds emitted. Differences in emission standards and tillage processes impact ozone formation potential (OFP). The mean OFP was 20.15 ± 16.15 g O3/(kg-fuel) for the China 0 emission standard. The OFP values decreased by 66.9% from China 0 to China II, and 67.4% from China II to China III. The mean OFP for sowing seeds of China 0 agricultural machines was 25.92 ± 13.84 g O3/(kg-fuel). Between 1.75 and 24.22 times more ozone was found to be formed during sowing seeds than during other processes for China 0 and China II agricultural machines. Total carbonyl compound emissions from agricultural machines in China was 19.23 Gg in 2019. The results improve our understanding of carbonyl compound emissions from agricultural machines in China.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Acetaldeído , Acroleína/análise , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Formaldeído/análise , Compostos Orgânicos/análise , Ozônio/análise , Smog/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
10.
Genes (Basel) ; 13(11)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36421796

RESUMO

Small auxin upregulated RNAs (SAURs) are primary auxin response genes; the function of regulating root growth angle (RGA) is unclear in the apple rootstock. We firstly identified 96 MdSAUR genes families from new apple genome GDDH13 using the resequence database of 'Baleng Crab (BC)' and 'M9'. A total of 25 MdSAUR genes, regulating the formation of RGA, were screened for the expression profiles in stems and roots and the allelic variants of quantitative trait loci (QTL). Finally, through the joint analysis of network and protein-protein interaction, MdSAUR2, MdSAUR29, MdSAUR60, MdSAUR62, MdSAUR69, MdSAUR71, and MdSAUR84 were screened as the main candidate genes for regulating RGA. This study provides a new insight for further revealing the regulatory mechanism of RGA in apple dwarf rootstocks.


Assuntos
Ácidos Indolacéticos , Malus , Raízes de Plantas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Malus/genética , Família Multigênica , RNA/metabolismo , Raízes de Plantas/crescimento & desenvolvimento
11.
Animals (Basel) ; 12(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36009684

RESUMO

The substrate is the key environmental factor that affects the growth, survival, population and distribution of dwelling mollusks in mudflat settings. To clarify the effect of the substrate grain size on soft substrate preference, burrowing ability and behavior during the selection process of juvenile Meretrix meretrix, four different grain size substrates (coarse sand, medium sand, fine sand, and natural substrate) were set up for comparison. The results indicated that: (1) the burrowing ability of juvenile specimens in fine sand was the strongest; (2) the degree (from high to low) of the juvenile's preference for the four substrates was in the order of fine sand > natural substrate > medium sand > coarse sand; and (3) the selection process of the substrate by the juveniles could be divided into four stages: preparation, selection, burrowing and end stages. These stages showed the behavioral characteristics of a longer selection time and higher percentage of movement in coarse sand. Therefore, our results demonstrated that sea areas or ponds with fine sand as the main component are more suitable for stock enhancement with M. meretrix. These results provide basic data for habitat selection and suitability evaluations for the aquaculture of M. meretrix.

12.
Front Plant Sci ; 13: 924001, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937331

RESUMO

Parental effects can influence offspring fitness, which may further impact interspecific competition. However, few studies have tested the role of clonal parental effects in regulating interspecific interactions and examined the underlying mechanisms. We conducted two consecutive experiments with two clonal plants (Pistia stratiotes and Eichhornia crassipes). In the first experiment, the mother ramet of P. stratiotes and E. crassipes were grown in two nutrient levels and treated with a DNA demethylation reagent (5-azacytidine) or not. In the second experiment, the offspring ramets from each of the four treatments in the first experiment were grown alone (no competition) or with a heterospecific neighbor (with interspecific competition). We found no parental nutrient effect on the competitive ability of E. crassipes, but a significant parental nutrient effect of both E. crassipes and P. stratiotes on the competitive ability of P. stratiotes. Furthermore, the parental nutrient effect of P. stratiotes on the competitive ability of P. stratiotes varied depending on the DNA methylation status of both P. stratiotes and E. crassipes. These clonal parental effects were related to resource provisioning and/or DNA methylation. We conclude that clonal parental nutrient effects can regulate interspecific competition between P. stratiotes and E. crassipes by altering the competitive ability of P. stratiotes. Both resource provisioning and epigenetic mechanisms can be involved in these clonal parental effects. By regulating interspecific competition, clonal parental effects may further influence species coexistence, community structure, and ecosystem functioning.

13.
Medicine (Baltimore) ; 101(32): e29964, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960047

RESUMO

Coronavirus disease-19 (COVID-19) caused a global pandemic burden, affecting hundreds of thousands of individuals, having life-threatening outcomes. Traditional Chinese Medicine plays a crucial role in the treatment of patients with COVID-19. The purpose of this study was to investigate the efficacy of combined therapy of qingfeiPaidu (QFPD) capsule and lianhuaqingwen (LHQW) capsule nursing interventions in the treatment of patients with COVID-19. A total of 318 patients with COVID-19 were enrolled and randomly received QFPD (n = 106), LHQW (n = 106), and QFPD-LHQW (n = 106). The clinical characteristics of COVID-19, the total lung severity scores, and blood laboratory indices were recorded in each patient in each group before treatment and at the end of treatment. The outcomes demonstrated that QFPD-LHQW group shortened the length of hospitalization, decreased C-reactive protein, creatine kinase, creatine kinase-myocardial band, lactate dehydrogenase, and blood urea nitrogen levels, and improved clinical symptoms, pulmonary inflammation, and prognosis. At the end of treatment, inflammation, immune function, circulating white blood cells, total lymphocyte count, and glutamic-oxaloacetic transaminase levels improved dramatically in 3 groups compared with baseline. All patients met the discharge criteria after 30-day treatment in 3 groups. Combined therapy of QFPD and LHQW demonstrated significant anti-inflammatory effects compared with those of only QFPD or LHQW in patients with mild and moderate COVID-19. The combined therapies may alleviate clinical symptoms of COVID-19 patients by improving inflammation and immune function.


Assuntos
Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas , Humanos , Inflamação , Prontuários Médicos , Estudos Retrospectivos
14.
Front Plant Sci ; 13: 890309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832222

RESUMO

Parental (environmental) effects can modify the growth of offspring, which may play an essential role in their adaptation to environmental variation. While numerous studies have tested parental effects on offspring growth, most have considered offspring growth of only one generation and very few have considered offspring growth of different generations. We conducted a greenhouse experiment with an aquatic clonal plant Pistia stratiotes. We grew a single ramet of P. stratiotes under low or high nutrients, the initial (parent) ramets produced three different generations of offspring ramets, and these offspring ramets were also subjected to the same two nutrient levels. High nutrients currently experienced by the offspring increased biomass accumulation and ramet number of all three offspring generations of P. stratiotes. However, these positive effects on biomass were greater when the offspring ramets originated from the parent ramets grown under low nutrients than when they were produced by the parent ramets grown under high nutrients. These results suggest that parental effects can impact the performance of different offspring generations of clonal plants. However, heavier offspring ramets produced under high nutrients in parental conditions did not increase the subsequent growth of the offspring generations. This finding indicates that parental provisioning in favorable conditions may not always increase offspring growth, partly depending on root allocation but not ramet size such as ramet biomass.

15.
Vaccine Insights ; 1(3): 165-181, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37091190

RESUMO

Immunization strategies against tuberculosis (TB) that confer better protection than neonatal vaccination with the 101-year-old Bacille Calmette-Guerin (BCG) are urgently needed to control the epidemic, but clinical development is hampered by a lack of established immune correlates of protection (CoPs). Two phase 2b clinical trials offer the first opportunity to discover human CoPs against TB. Adolescent BCG re-vaccination showed partial protection against Mycobacterium tuberculosis (Mtb) infection, as measured by sustained IFNγ release assay (IGRA) conversion. Adult M72/AS01E vaccination showed partial protection against pulmonary TB. We describe two collaborative research programs to discover CoPs against TB and ensure rigorous, streamlined use of available samples, involving international immunology experts in TB and state-of-the-art technologies, sponsors and funders. Hypotheses covering immune responses thought to be important in protection against TB have been defined and prioritized. A statistical framework to integrate the data analysis strategy was developed. Exploratory analyses will be performed to generate novel hypotheses.

16.
Gene Ther ; 29(1-2): 81-93, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34257417

RESUMO

Mutations in the gene for Retinitis Pigmentosa GTPase Regulator (RPGR) cause the X-linked form of inherited retinal degeneration, and the majority are frameshift mutations in a highly repetitive, purine-rich region of RPGR known as the OFR15 exon. Truncation of the reading frame in this terminal exon ablates the functionally important C-terminal domain. We hypothesized that targeted excision in ORF15 by CRISPR/Cas9 and the ensuing repair by non-homologous end joining could restore RPGR reading frame in a portion of mutant photoreceptors thereby correcting gene function in vivo. We tested this hypothesis in the rd9 mouse, a naturally occurring mutant line that carries a frameshift mutation in RPGRORF15, through a combination of germline and somatic gene therapy approaches. In germline gene-edited rd9 mice, probing with RPGR domain-specific antibodies demonstrated expression of full length RPGRORF15 protein. Hallmark features of RPGR mutation-associated early disease phenotypes, such as mislocalization of cone opsins, were no longer present. Subretinal injections of the same guide RNA (sgRNA) carried in AAV sgRNA and SpCas9 expression vectors restored reading frame of RPGRORF15 in a subpopulation of cells with broad distribution throughout the retina, confirming successful correction of the mutation. These data suggest that a simplified form of genome editing mediated by CRISPR, as described here, could be further developed to repair RPGRORF15 mutations in vivo.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Animais , Sistemas CRISPR-Cas , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Edição de Genes , Camundongos , Mutação , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/terapia
17.
ACS Nano ; 15(4): 7522-7535, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33779134

RESUMO

Separating low/high-valent ions with sub-nanometer sizes is a crucial yet challenging task in various areas (e.g., within environmental, healthcare, chemical, and energy engineering). Satisfying high separation precision requires membranes with exceptionally high selectivity. One way to realize this is constructing well-designed ion-selective nanochannels in pressure-driven membranes where the separation mechanism relies on combined steric, dielectric exclusion, and Donnan effects. To this aim, charged nanochannels in polyamide (PA) membranes are created by incorporating ionic polyamidoamine (PAMAM) dendrimers via interfacial polymerization. Both sub-10 nm sizes of the ionic PAMAM dendrimer molecules and their gradient distributions in the PA nanofilms contribute to the successful formation of defect-free PA nanofilms, containing both internal (intramolecular voids) and external (interfacial voids between the ionic PAMAM dendrimers and the PA matrix) nanochannels for fast transport of water molecules. The external nanochannels with tunable ionizable groups endow the PA membranes with both high low/high-valent co-ion selectivity and chemical cleaning tolerance, while the ion sieving/transport mechanism was analyzed by employing the Donnan steric pore model with dielectric exclusion.

18.
Sci Total Environ ; 753: 142065, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32906051

RESUMO

Although cultured algae and shellfish can be the dominant species in some localized coastal waters, research on the effect of large-scale mariculture on the carbonate system variations in these local waters is still lacking. We conducted five cruises from May to September and studied spatiotemporal variations in the seawater carbonate system in the semi-closed Sanggou Bay, which is famous for its large-scale mariculture. Our results showed that both kelp and bivalve farming induced significant spatiotemporal variations in the carbonate system within the bay. When cultured kelp reached its highest biomass in May, the maximum ΔDIC, ΔpCO2 and ΔpHT between the seawater from the kelp farming area and the non-farming outer bay area was -156 µmol kg-1, -102 µatm and 0.15 pH units, respectively. However, no significant effect of kelp farming on seawater total alkalinity (TA) was observed. Kelp farming also caused the carbonate system variations of seawater from the bivalve farming area. Assuming no kelp was farmed in May, the average pH and pCO2 would reduce by 0.12 pH units and increase by 179 µatm, respectively, in the bivalve farming area. Bivalve farming significantly reduced seawater TA, indicating that fast deposition of calcium carbonate occurred in the bivalve farming area. Although bivalve respiration released CO2 into seawater and elevated seawater pCO2 level and reduced seawater pHT, surprisingly, seawater dissolved inorganic carbon (DIC) reduced significantly in the bivalve farming area. These results indicated that bivalves fixed a larger amount of inorganic carbon by calcification than that released into seawater by respiration. Overall, large-scale kelp and bivalve farming are important biological drivers of variations in the carbonate system within the semi-enclosed Sanggou Bay. Altered carbonate systems by kelp farming may favour calcification of farmed bivalves and provide an essential refuge for these species during the future ocean acidification.


Assuntos
Bivalves , Kelp , Agricultura , Animais , Dióxido de Carbono , Carbonatos , Concentração de Íons de Hidrogênio , Água do Mar
19.
Adv Drug Deliv Rev ; 168: 181-195, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603815

RESUMO

A variety of inherited or multifactorial ocular diseases call for novel treatment paradigms. The newly developed genome editing technology, CRISPR, has shown great promise in treating these diseases, but delivery of the CRISPR/Cas components to target ocular tissues and cells requires appropriate use of vectors and routes of administration to ensure safety, efficacy and specificity. Although adeno-associated viral (AAV) vectors are thus far the most commonly used tool for ocular gene delivery, sustained expression of CRISPR/Cas components may cause immune reactions and an increased risk of off-target editing. In this review, we summarize the ocular administration routes and discuss the advantages and disadvantages of viral and non-viral vectors for delivery of CRISPR/Cas components to the eye. We review the existing studies of CRISPR/Cas genome editing for ocular diseases and discuss the major challenges of the technology in ocular applications. We also discuss the most recently developed CRISPR tools such as base editing and prime editing which may be used for future ocular applications.


Assuntos
Oftalmopatias/genética , Oftalmopatias/terapia , Edição de Genes/métodos , Terapia Genética/métodos , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Vias de Administração de Medicamentos , Vetores Genéticos , Humanos
20.
J Exp Med ; 218(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33180929

RESUMO

Typhoid Vi vaccines have been shown to be efficacious in children living in endemic regions; however, a widely accepted correlate of protection remains to be established. We applied a systems serology approach to identify Vi-specific serological correlates of protection using samples obtained from participants enrolled in an experimental controlled human infection study. Participants were vaccinated with Vi-tetanus toxoid conjugate (Vi-TT) or unconjugated Vi-polysaccharide (Vi-PS) vaccines and were subsequently challenged with Salmonella Typhi bacteria. Multivariate analyses identified distinct protective signatures for Vi-TT and Vi-PS vaccines in addition to shared features that predicted protection across both groups. Vi IgA quantity and avidity correlated with protection from S. Typhi infection, whereas higher fold increases in Vi IgG responses were associated with reduced disease severity. Targeted antibody-mediated functional responses, particularly neutrophil phagocytosis, were also identified as important components of the protective signature. These humoral markers could be used to evaluate and develop efficacious Vi-conjugate vaccines and assist with accelerating vaccine availability to typhoid-endemic regions.


Assuntos
Febre Tifoide/imunologia , Vacinas Tíficas-Paratíficas/imunologia , Vacinas Conjugadas/imunologia , Adulto , Carga Bacteriana , Humanos , Imunidade Humoral , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Fatores de Tempo , Febre Tifoide/prevenção & controle , Vacinas Tíficas-Paratíficas/farmacologia , Vacinas Conjugadas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...