Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 18: 307-324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328440

RESUMO

Aloe barbadensis Mill. has a long history of medicinal use in the annals of traditional Chinese medicine, wherein it has garnered considerable renown. Its multifaceted therapeutic properties, characterized by its anti-inflammatory and antibacterial attributes, alongside its established efficacy as a laxative agent, have been extensively documented. This review commences with an exploration of the nomenclature, fundamental characteristics, and principal constituents of Aloe barbadensis Mill. responsible for its laxative effects. Subsequently, we delve into an extensive examination of the molecular mechanisms underlying Aloe barbadensis Mill.'s laxative properties, types of constipation treatments, commercially available preparations, considerations pertaining to toxicity, and its clinical applications. This review aims to serve as a comprehensive reference point for healthcare professionals and researchers, fostering an enhanced understanding of the optimal utilization of Aloe barbadensis Mill. in the treatment of constipation.


Assuntos
Aloe , Extratos Vegetais , Humanos , Extratos Vegetais/uso terapêutico , Laxantes/uso terapêutico , Medicina Tradicional Chinesa , Constipação Intestinal/tratamento farmacológico
2.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276014

RESUMO

Levamisole (LVM) is considered an immunomodulatory agent that has the potential to treat various cancer and inflammation diseases. However, there is still much debate surrounding the toxicokinetic and toxicological information of LVM. Therefore, it is crucial to assess its toxicity to provide useful data for future human LVM risk assessments. In this study, a barrier environment was established under the guidance of good laboratory practice (GLP) at the Fujian Center for New Drug Safety Evaluation. Male beagle dogs were orally administered with 5, 15, and 30 mg/kg of LVM daily for four weeks. Toxicity assessment was based on various factors such as mortality, clinical signs, food and water consumption, body weight, body temperature, electrocardiogram, ophthalmological examination, hematology, serum biochemistry, organ/body coefficients, histopathological study, and toxicokinetic analysis. The results of this study showed that LVM did not exhibit any significant toxicological effects on beagle dogs at the exposure levels tested. A no observed adverse effect level (NOAEL) of LVM was set at 30 mg/kg/day for male beagle dogs, which is equivalent to a 12-fold clinical dose in humans. Moreover, the repeated exposure to LVM for four weeks did not lead to any bioaccumulation. These findings provide valuable insights for future human LVM risk assessments.

3.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446714

RESUMO

Imidazothiazole derivatives are becoming increasingly important in therapeutic use due to their outstanding physiological activities. Recently, applying imidazothiazole as the core, researchers have synthesized a series of derivatives with biological effects such as antitumor, anti-infection, anti-inflammatory and antioxidant effects. In this review, we summarize the main pharmacological effects and pharmacological mechanisms of imidazothiazole derivates; the contents summarized herein are intended to advance the research and rational development of imidazothiazole-based drugs in the future.


Assuntos
Tiazóis , Tiazóis/farmacologia
4.
ACS Appl Mater Interfaces ; 14(7): 8782-8792, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138103

RESUMO

Chemoimmunotherapy can synergistically enhance the therapeutic effects and decrease the side effects by a combined method. However, the effective targeted codelivery of various chemotherapeutic agents and siRNAs remains challenging. Although nanomedicine-based chemoimmunotherapy has shown great potential in cancer treatment in recent years, further effort is needed to simplify the nanocarrier designs and maintain their effective functions. Here, we report a simple but robust multifunctional liposomal nanocarrier that contains a pH-sensitive liposome (LP) shell and a dendritic core for tumor-targeted codelivery of programmed cell death ligand 1 (PD-L1) siRNA and doxorubicin (DOX) (siPD-L1@PM/DOX/LPs). siPD-L1@PM/DOX/LPs had a suitable particle size and zeta potential, excellent stability in serum, and pH-sensitive drug release in vitro. They exhibited significant cell proliferation inhibition compared to free DOX and DOX-loaded LPs and could escape endosomes, effectively release siRNA into the cytoplasm of MCF-7 cells, and significantly reduce the PD-L1 expression on tumor cells. In vivo imaging confirmed high accumulation of siPD-L1@PM/DOX/LPs at the tumor site. More importantly, compared with siPD-L1@PM/LPs or DOX alone, siPD-L1@PM/DOX/LPs were more effective in inhibiting tumor growth and activating cytotoxic T cells in vivo. In conclusion, this nanocarrier may hold promise as a codelivery nanoplatform to improve the treatment of various solid tumors.


Assuntos
Neoplasias da Mama , Nanopartículas , Antígeno B7-H1/genética , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Feminino , Humanos , Lipossomos , RNA Interferente Pequeno/uso terapêutico
5.
Pharmaceutics ; 13(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069878

RESUMO

Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease that mainly erodes joints and surrounding tissues, and if it is not treated in time, it can cause joint deformities and loss of function. S-propargyl-cysteine (SPRC) is an excellent endogenous hydrogen sulfide donor which can relieve the symptoms of RA through the promotion of H2S release via the CSE/H2S pathway in vivo. However, the instant release of H2S in vivo could potentially limit its further clinical use. To solve this problem, in this study, a SPRC-loaded poly(lactic acid) (PLA) microsphere (SPRC@PLA) was prepared, which could release SPRC in vitro in a sustained manner, and further promote sustained in vivo H2S release. Furthermore, its therapeutical effect on RA in rats was also studied. A spherical-like SPRC@PLA was successfully prepared with a diameter of approximately 31.61 µm, yielding rate of 50.66%, loading efficiency of 6.10% and encapsulation efficiency of 52.71%. The SPRC@PLA showed significant prolonged in vitro SPRC release, to 4 days, and additionally, an in vivo H2S release around 3 days could also be observed. In addition, a better therapeutical effect and prolonged administration interval toward RA rats was also observed in the SPRC@PLA group.

6.
Int J Pharm ; 605: 120829, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34174358

RESUMO

The objective of the present study was to prepare and evaluate a microemulsion-based hydrogel with high malleability as a transdermal delivery carrier for levamisole (LMS). A pseudo-ternary phase diagram and D-optimal mixture design were utilized to screen and optimize the microemulsion, and the formulation comprised 7.5% MaisineTM35-1, 33% Smix and 59.5% water. The microemulsion was physically stable with an average size of 19.3 ± 0.1 nm and zeta potential of -3.84 ± 0.05 mV. Moreover, a highly malleable alginate-boronic acid (alginate-BA) gel was prepared and could come into close contact with highly curved skin. The optimized microemulsion was loaded into alginate-BA gel and subjected to ex vivo and in vivo investigation. The microemulsion-based gel had desirable characterization, good stability and negligible skin irritation. The results of ex vivo permeation study showed that LMS achieved a significantly higher cumulative amount from the LMS-loaded microemulsion-based gel than that from the LMS-gel. The pharmacokinetic study showed a twofold increase in relative bioavailability compared to the commercial liniment. These results provide insight into the capability of the developed malleable microemulsion-based gel to enhance the transdermal permeation and bioavailability of LMS.


Assuntos
Levamisol , Absorção Cutânea , Administração Cutânea , Emulsões/metabolismo , Hidrogéis/metabolismo , Levamisol/metabolismo , Pele/metabolismo
7.
Cancer Sci ; 111(1): 72-83, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31691433

RESUMO

Capn4, also known as CapnS1, is a member of the calpain family, which plays a crucial role in maintaining the activity and function of calpain. We previously reported that Capn4 also plays an essential role in the migration of nasopharyngeal carcinoma (NPC) cells through regulation of (MMP-2) by nuclear factor-kappa B activation. Epstein-Barr virus latent membrane protein 1 (LMP1) is closely related to the malignant functions of NPC; however, the relationship between LMP1 and Capn4 in NPC remain unclear. Immunohistochemical studies showed that the level of LMP1 and Capn4 expression was high in both primary and metastatic NPC tissues, with a significantly positive correlation. We further found that LMP1 was able to upregulate the Capn4 promoter in a dose-dependent way through the C-terminal activation region (CTAR)1 and CTAR2 domains to activate AP-1. Moreover, we also found that LMP1 activated AP-1 through ERK/JNK phosphorylation. These findings indicate that Capn4 coordination with LMP1 promotes actin rearrangement and, ultimately, cellular migration. These results show that Capn4 coordination with LMP1 enhances NPC migration by increasing actin rearrangement involving ERK/JNK/AP-1 signaling. Therapeutically, additional and more specific LMP1 and Capn4 targeted inhibitors could be exploited to treat NPC.


Assuntos
Calpaína/genética , Sistema de Sinalização das MAP Quinases/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Metástase Neoplásica/genética , Fator de Transcrição AP-1/genética , Proteínas da Matriz Viral/genética , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Regulação Neoplásica da Expressão Gênica/genética , Herpesvirus Humano 4/patogenicidade , Humanos , NF-kappa B/genética , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/virologia , Metástase Neoplásica/patologia , Fosforilação/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Regulação para Cima/genética
8.
Int J Pharm ; 571: 118717, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31610279

RESUMO

The fat-soluble vitamins lipid injectable emulsion, a parenteral supplement, commonly used for hospitalized patients to meet daily requirements of fat-soluble vitamins. This study attempts to reduce risk, improve the stability and safety of fat-soluble vitamins lipid injectable emulsion using a Quality by Design (QbD) approach. The quality target product profile and critical quality attributes were defined based on a comprehensive understanding of fat-soluble vitamins lipid injectable emulsions. The emulsions were prepared using a high-pressure homogenization method. Critical quality attributes (CQAs) were identified using risk assessment tools such as fishbone diagram and risk estimation matrix. The assay, mean droplet size, polydispersity index, zeta potential, and the volume-weighted percentage of fat greater than 5 µm (PFAT5) were identified as CQAs. Accordingly, three critical formulation and process parameters for the emulsions were the percentage of emulsifier, homogenization pressure, and homogenization recirculation. The design space was obtained via a design of experiment (DoE), and an optimum formulation was successfully prepared. All physicochemical attributes of the optimal formulation were within the design space (i.e., droplet size: 217.2 ±â€¯0.37 nm; polydispersity index: 0.115 ±â€¯0.012; PFAT5: less than 0.05%; zeta potential: -34.6 ±â€¯1.09 mV; and viscosity: 20.95 mPa at 0.1 s-1). The optimal formulation remained acceptable physicochemical stability at 25 ±â€¯2 °C/60% RH ±â€¯5% RH over a 12-month period. Safety of the optimal emulsion was evaluated as acceptable through the determination of lysophospholipid content and an in vitro hemolysis assay. In conclusion, an optimal lipid injectable emulsion for fat-soluble vitamins was successfully prepared using a QbD approach.


Assuntos
Composição de Medicamentos/normas , Emulsões Gordurosas Intravenosas/administração & dosagem , Lipídeos/química , Solventes/química , Vitaminas/administração & dosagem , Animais , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Eritrócitos , Emulsões Gordurosas Intravenosas/química , Emulsões Gordurosas Intravenosas/toxicidade , Hemólise/efeitos dos fármacos , Lipídeos/toxicidade , Tamanho da Partícula , Controle de Qualidade , Coelhos , Projetos de Pesquisa , Solventes/toxicidade , Testes de Toxicidade , Viscosidade , Vitaminas/química , Vitaminas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...