Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Sci Total Environ ; 918: 170546, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38309340

RESUMO

The neurotoxic effects and mechanisms of low-dose and long-term sulfamethoxazole (SMZ) exposure remain unknown. This study exposed zebrafish to environmental SMZ concentrations and observed behavioral outcomes. SMZ exposure increased hyperactivity and altered the transcript levels of 17 genes associated with neurological function. It impaired intestinal function by reducing the number of intestinal goblet cells and lipid content. Metabolomic results indicated that the contents of several lipids and amino acids in the gut were altered, which might affect the expression levels of neurological function-related genes. Metagenomic results demonstrated that SMZ exposure substantially altered the composition of the gut microbiome. Zebrafish receiving a transplanted fecal microbiome from the SMZ group were also found to exhibit abnormal behavior, suggesting that the gut microbiome is an important target for SMZ exposure-induced neurobehavioral abnormalities. Multi-omics correlation analysis revealed that gut micrometabolic function was related to differential gut metabolite levels, which may affect neurological function through the gut-brain-axis. Reduced abundance of Lefsonia and Microbacterium was strongly correlated with intestinal metabolic function and may be the key bacterial genera in neurobehavioral changes. This study confirms for the first time that SMZ-induced neurotoxicity in zebrafish is closely mediated by alterations in the gut microbiome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Peixe-Zebra/genética , Sulfametoxazol/toxicidade , Metagenoma
2.
Mater Horiz ; 11(1): 227-237, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37905671

RESUMO

Non-contact optical temperature detection has shown a great promise in biological systems and microfluidics because of its outstanding spatial resolution, superior accuracy, and non-invasive nature. However, the thermal quenching of photoluminescence significantly hinders the practical applications of optical temperature probes. Herein, we report thermally enhanced green upconversion luminescence in Yb/Er/ZnGdO microflowers by a defect-assisted thermal distribution mechanism. A 1.6-fold enhancement in green emission was demonstrated as the temperature increased from 298 K to 558 K. Experimental results and dynamic analysis demonstrated that this behavior of thermally activating green upconversion luminescence originates from the emission loss compensation, which is attributed to thermally-induced energy transfer from defect levels to the green emitting level. In addition, the Yb/Er/ZnGdO microflowers can act as self-referenced radiometric optical thermometers. The ultrahigh absolute sensitivity of 1.61% K-1 and an excellent relative sensitivity of 15.5% K-1 based on the 4F9/2/2H11/2(2) level pair were synchronously achieved at room temperature. These findings provide a novel strategy for surmounting the thermal quenching luminescence, thereby greatly promoting the application of non-contact sensitive radiometric thermometers.

3.
J Mater Chem B ; 12(2): 286-331, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37955235

RESUMO

The Curie temperature is an important thermo-characteristic of magnetic materials, which causes a phase transition from ferromagnetic to paramagnetic by changing the spontaneous re-arrangement of their spins (intrinsic magnetic mechanism) due to an increase in temperature. The self-control-temperature (SCT) leads to the conversion of ferro/ferrimagnetic materials to paramagnetic materials, which can extend the temperature-based applications of these materials from industrial nanotechnology to the biomedical field. In this case, magnetic induction hyperthermia (MIH) with self-control-temperature has been proposed as a physical thermo-therapeutic method for killing cancer tumors in a biologically safe environment. Specifically, the thermal source of MIH is magnetic nanoparticles (MNPs), and thus their biocompatibility and Curie temperature are two important properties, where the former is required for their clinical application, while the latter acts as a switch to automatically control the temperature of MIH. In this review, we focus on the Curie temperature of magnetic materials and provide a complete overview beginning with basic magnetism and its inevitable relation with Curie's law, theoretical prediction and experimental measurement of the Curie temperature. Furthermore, we discuss the significance, evolution from different types of alloys to ferrites and impact of the shape, size, and concentration of particles on the Curie temperature considering the proposed SCT-based MIH together with their biocompatibility. Also, we highlight the thermal efficiency of MNPs in destroying tumor cells and the significance of a low Curie temperature. Finally, the challenges, concluding remarks, and future perspectives in promoting self-control-temperature based MIH to clinical application are discussed.


Assuntos
Hipertermia Induzida , Neoplasias , Humanos , Temperatura , Hipertermia Induzida/métodos , Magnetismo , Imãs , Hipertermia
4.
ACS Appl Mater Interfaces ; 15(38): 44689-44710, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37699536

RESUMO

Ferroptosis is characterized by iron accumulation and lipid peroxidation. However, a clinical dose of Fe3O4 nanoparticles could not cause effective ferroptosis in tumors, and the mechanism is yet to be completely understood. In this study, using RNA-seq data, we found that tumor cells could feedback-activate the antioxidant system by upregulating Nrf-2 expression, thus avoiding ferroptosis caused by Fe3O4 nanoparticles. We also found that DHJS (a probe for ROS generation) can antagonize Nrf-2 expression when it synergizes with Fe3O4 nanoparticles, thus inducing ferroptosis in tumor cells. Considering these findings, we created a biomimetic hybrid cell membrane camouflaged by PLGA-loaded Fe3O4 and DHJS to treat osteosarcoma. The hybrid cell membrane endowed the core nanoparticle with the extension of blood circulation life and enhanced homologous targeting ability. In addition, DHJS and Fe3O4 in nanoparticles prompted synergistically lethal ferroptosis in cancer cells and induced macrophage M1 polarization as well as the infiltration of CD8(+) T cells and dendritic cells in tumors. In summary, this study provides novel mechanistic insights and practical strategies for ferroptosis induction of Fe3O4 nanoparticles. Meanwhile, the synthesized biomimetic nanoparticles exhibited synergistic ferroptosis/immunotherapy against osteosarcoma.


Assuntos
Neoplasias Ósseas , Ferroptose , Osteossarcoma , Humanos , Membrana Eritrocítica , Linfócitos T CD8-Positivos , Osteossarcoma/tratamento farmacológico , Imunoterapia
5.
Sci Total Environ ; 882: 163482, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062325

RESUMO

The common antibiotic oxytetracycline (OTC) is nowadays commonly found in natural aquatic environments. However, the underlying mechanisms of low-dose OTC exposure and its neurotoxic effects on aquatic animals remain unknown. In this study, we exposed zebrafish larvae to environmental concentrations of OTC in early life and performed neurobehavioral, 16S rRNA gene sequencing, and transcriptomic analyses. OTC exposure resulted in hyperactivity of larvae and a significant reduction in the number of neurons in the midbrain. The expression levels of 15 genes related to neural function changed. Additionally, the composition of 65 genera of the gut microbiota of larvae was altered, which may be one of the reasons for the abnormal neural development. We further studied the long-term outcomes among adult fish long after cessation of OTC exposure. OTC treatment caused adult fish to be depressive and impulsive, symbolizing bipolar disorder. Adult fish exposed to OTC had significantly fewer neurons and their gut bacteria composition did not recover 104 days after terminating OTC exposure. Finally, we analyzed the correlation between the gut microbiota of larvae, genes related to neural function, and metabolites of adult fish brain tissue. The results showed that the abundance of several members of the biome in larvae was related to the transcription levels of genes related to neural function, which were related to the metabolic levels in the adult brain. In conclusion, our study showed that early-life exposure to environmental concentrations of OTC can lead to persistent neurobehavioral abnormalities until adulthood through dysbiosis in the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Oxitetraciclina , Animais , Oxitetraciclina/toxicidade , Peixe-Zebra/fisiologia , RNA Ribossômico 16S/genética , Antibacterianos/toxicidade , Larva
6.
Sci Total Environ ; 867: 161296, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36592900

RESUMO

Arsenic (As) is a metalloid commonly found worldwide. Environmental As exposure may cause potential health hazards and behavioral changes in humans and animals. However, the effects of environmental As concentrations on social behavior, especially during the juvenile stage, are unclear. In this study, we observed behavioral changes in juvenile zebrafish after 28 days of exposure to inorganic As (NaAsO2 100 and 500 ppb) in water, especially anxiety and social deficits. Additionally, the level of oxidative stress in the zebrafish brain after As treatment increased, the content of dopamine (DA) decreased, and the transcription level of genes involved in DA metabolism with the activity of monoamine oxidase (MAO) increased. Oxidative stress is a recognized mechanism of nerve damage induced by As exposure. The zebrafish were exposed to N-acetylcysteine (NAC) to reduce As exposure-induced oxidative stress. The results showed improvements in social behavior, DA content, MAO activity, and gene transcription in zebrafish. In conclusion, environmental As exposure can induce behavioral abnormalities, such as anxiety and social deficits in zebrafish, which may be caused by As-induced oxidative stress altering gene transcription levels, causing an increase in MAO activity and a decrease in DA.


Assuntos
Arsênio , Arsenicais , Poluentes Químicos da Água , Humanos , Animais , Peixe-Zebra/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo , Arsenicais/metabolismo , Estresse Oxidativo , Proteínas de Peixe-Zebra/metabolismo , Poluentes Químicos da Água/metabolismo
7.
Ecotoxicol Environ Saf ; 247: 114234, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326554

RESUMO

Sulfamethoxazole (SMZ) is an important antibiotic used to prevent and treat infections in both clinical settings and animal husbandry. High levels of SMZ may exhibit endocrine toxicity. Environmental SMZ enters the human body via food and water; however, the toxicity of environmental doses of SMZ and its effects on reproductive health are unknown. In the present study, zebrafish were exposed to low concentrations of SMZ (1000 and 5000 ng/L) from 2 h post-fertilization to 120 d post-fertilization. Consequently, the proportion of mature oocytes in adult female zebrafish ovarian tissue increased by 98.2 %, indicating that SMZ promotes ovarian maturation. Metabolomics analysis revealed significant changes in ovarian lipid and amino acid levels after SMZ treatment. An enzyme-linked immunoassay used to detect sex hormones in the ovaries showed that SMZ exposure significantly increased the levels of estradiol, a follicle-stimulating hormone, and of luteinizing hormone. Furthermore, an association analysis showed that most of the differentially expressed metabolites in the ovary were strongly correlated with the levels of sex hormones secreted by the pituitary gland. Therefore, significantly increased transcript levels of gonadotropin-releasing hormone (GnRH) and follicle-stimulating hormone detected in brain tissue suggested that SMZ may exhibit ovarian toxicity via the hypothalamus. In vitro experiments were performed to demonstrate that SMZ targets neurons in the hypothalamus. Exposure to SMZ significantly increased the GnRH content in GnRH neurons. Finally, molecular docking simulations indicated the potential interaction of SMZ with G protein-coupled receptor 54; this molecular binding can activate, synthesize, and release GnRH in neurons. In conclusion, long-term environmental exposure to SMZ may induce ovarian toxicity by affecting the hypothalamus-pituitary-gonad axis.


Assuntos
Ovário , Peixe-Zebra , Adulto , Animais , Feminino , Humanos , Hormônio Foliculoestimulante , Hormônios Esteroides Gonadais , Hormônio Liberador de Gonadotropina , Lipídeos , Simulação de Acoplamento Molecular , Oócitos , Sulfametoxazol/toxicidade , Aminoácidos/metabolismo
8.
Front Microbiol ; 13: 985065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212820

RESUMO

Oxytetracycline, a widely produced and administered antibiotic, is uncontrollably released in low concentrations in various types of environments. However, the impact of exposure to such low concentrations of antibiotics on the host remains poorly understood. In this study, we exposed zebrafish to a low concentration (5,000 ng/L) of oxytetracycline for 1 month, collected samples longitudinally (Baseline, and Days 3, 6, 9, 12, 24, and 30), and elucidated the impact of exposure on microbial composition, antibiotic resistance genes, mobile genetic elements, and phospholipid metabolism pathway through comparison of the sequenced data with respective sequence databases. We identified Pseudomonas aeruginosa, a well-known pathogen, to be significantly positively associated with the duration of oxytetracycline exposure (Adjusted P = 5.829e-03). Several tetracycline resistance genes (e.g., tetE) not only showed significantly higher abundance in the exposed samples but were also positively associated with the duration of exposure (Adjusted P = 1.114e-02). Furthermore, in the exposed group, the relative abundance of genes involved in phospholipid metabolism had also decreased. Lastly, we characterized the impact of exposure on zebrafish intestinal structure and found that the goblet cell counts were decreased (~82%) after exposure. Overall, our results show that a low concentration of oxytetracycline can increase the abundance of pathogenic bacteria and lower the abundance of key metabolic pathways in the zebrafish gut microbiome that can render them prone to bacterial infections and health-associated complications.

9.
Acta Biomater ; 153: 453-464, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36167241

RESUMO

The embolic microspheres containing magnetic nanoparticles and anti-tumor drugs have been proposed for transcatheter arterial chemoembolization (TACE). However, this technique still suffers the poor control of hyperthermia temperature and drug release behavior. Herein, the magnetic microspheres based on low Curie temperature superparamagnetic iron oxide nanoparticles are developed by emulsification cross-linking of gelatin, genipin, and sodium alginate. The magnetic microspheres can self-regulate the hyperthermia temperature at around 50°C, un-necessitating any temperature control facilities. The magnetic microspheres can load doxorubicin hydrochloride and the loaded drug can be released in a controllable way by using an alternating magnetic field. Cytocompatibility and hemolysis evaluations confirm the non-cytotoxicity and negligible hemolysis of magnetic microspheres. The embolization model on rabbit auricular artery demonstrates that the magnetic microspheres can occlude the targeted blood vessel and are visualized under CT/MR imaging. All these findings suggest that the prepared magnetic microspheres could be used as the embolic agent in TACE. STATEMENT OF SIGNIFICANCE: The existing magnetic embolic microspheres suffer the poor control of hyperthermia temperature and drug release behavior in TACE. In this work, we developed the magnetic embolic microspheres based on superparamagnetic iron oxide nanoparticles with a low Curie temperature. Upon the application of alternating magnetic field, the embolic microspheres can self-regulate the hyperthermia temperature at around 50°C and the drug loaded in the microspheres can be released in a somewhat controllable manner. The embolic microspheres are also detectable to both CT and MR. These characteristics enable the developed microspheres to simultaneously realize self-regulating temperature hyperthermia, on-demand drug release, embolization, and CT/MR imaging.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Hipertermia Induzida , Neoplasias Hepáticas , Animais , Coelhos , Microesferas , Quimioembolização Terapêutica/métodos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Temperatura , Hemólise , Doxorrubicina/farmacologia , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Artérias , Fenômenos Magnéticos
10.
Sci Rep ; 12(1): 16055, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163493

RESUMO

Hysteresis loss and relaxation loss are the two dominant heating mechanisms of magnetic nanoparticles (MNPs) in an alternating magnetic field (AMF). In magnetic induction hyperthermia, heating efficiency is one of the crucial factors. It is proposed that the MNPs with a dominant heating mechanism of relaxation loss will exhibit a higher heating efficiency. However, the relative experiments supporting the proposal is still absent due to the difficulty of obtaining the MNPs with the same components and similar morphology but different dominant heating mechanism. Here, the post-processing method of calcination is employed to change the cation distribution of the MNPs (Fe3O4 and Zn0.54Co0.46Cr0.6Fe1.4O4), so as to obtain the MNPs with similar morphology but different dominant heating mechanism. The magnetic heating experiments were conducted to examine the heating efficiency. The results suggest that the MNPs with relaxation loss have a higher heating efficiency under the investigated AMF.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Calefação , Hipertermia Induzida/métodos , Campos Magnéticos , Magnetismo
11.
Front Cell Infect Microbiol ; 12: 910766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782152

RESUMO

Zebrafish have been used as a model organism for more than 50 years and are considered an excellent model for studying host-microbiome interactions. However, this largely depends on our understanding of the zebrafish gut microbiome itself. Despite advances in sequencing and data analysis methods, the zebrafish gut microbiome remains highly understudied. This study performed the de novo metagenome assembly and recovery of the metagenome-assembled genomes (MAGs) through genome binning (and refinement) of the contigs assembled from the zebrafish stool. The results indicate that majority of the MAGs had excellent quality i.e. high completeness (≥90%) and low contamination levels (≤5%). MAGs mainly belong to the taxa that are known to be members of the core zebrafish stool microbiome, including the phylum Proteobacteria, Fusobacteriota, and Actinobacteriota. However, most of the MAGs remained unclassified at the species level and reflected previously unexplored microbial taxa and their potential novelty. These MAGs also contained genes with predicted functions associated with diverse metabolic pathways that included carbohydrate, amino acid, and lipid metabolism pathways. Lastly, we performed a comparative analysis of Paucibacter MAGs and reference genomes that highlighted the presence of novel Paucibacter species and enriched metabolic potential in the recovered MAGs.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Fezes , Microbioma Gastrointestinal/genética , Metagenoma , Peixe-Zebra
12.
Front Endocrinol (Lausanne) ; 13: 850231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721760

RESUMO

Triclosan (TCS) is an antimicrobial chemical widely used in personal care products. Most of the TCS component is discharged and enters the aquatic ecosystem after usage. TCS has a similar structure as thyroid hormones that are synthesized by thyroid follicular epithelial cells, thus TCS has a potential endocrine disrupting effect. It is still not clear how the different levels of the environmental TCS would affect early development in vivo. This study examines the effects of TCS on thyroid hormone secretion and the early development of zebrafish. The fertilized zebrafish eggs were exposed to TCS at 0 (control), 3, 30, 100, 300, and 900 ng/mL, and the hatching rate and the larvae mortality were inspected within the first 14 days. The total triiodothyronine (TT3), total thyroxine (TT4), free triiodothyronine (FT3), and free thyroxine (FT4) were measured at 7, 14, and 120 days post-fertilization (dpf). The histopathological examinations of thyroid follicles were conducted at 120 dpf. TCS exposure at 30-300 ng/mL reduced the hatching rate of larvae to 34.5% to 28.2 % in the first 48 hours and 93.8 .7 % to 86.8 % at 72 h. Extremely high TCS exposure (900 ng/mL) strongly inhibited the hatching rate, and all the larvae died within 1 day. Exposure to TCS from 3 to 300 ng/mL reduced the thyroid hormones production. The mean TT3 and FT3 levels of zebrafish decreased in 300 ng/mL TCS at 14 dpf (300 ng/mL TCS vs. control : TT3 , 0.19 ± 0.08 vs. 0.39 ± 0.06; FT3, 19.21 ± 3.13 vs. 28.53 ± 1.98 pg/mg), and the FT4 decreased at 120 dpf ( 0.09 ± 0.04 vs. 0.20 ± 0.14 pg/mg). At 120 dpf , in the 300 ng/mL TCS exposure group, the nuclear area and the height of thyroid follicular epithelial cells became greater, and the follicle cell layer got thicker. This happened along with follicle hyperplasia, nuclear hypertrophy, and angiogenesis in the thyroid. Our study demonstrated that early life exposure to high TCS levels reduces the rate and speed of embryos hatching, and induces the histopathological change of thyroid follicle, and decreases the TT3, FT3, and FT4 production in zebrafish.


Assuntos
Triclosan , Animais , Ecossistema , Larva , Glândula Tireoide , Hormônios Tireóideos/farmacologia , Tiroxina/farmacologia , Tri-Iodotironina , Peixe-Zebra
13.
Chemosphere ; 288(Pt 3): 132657, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34699881

RESUMO

Thus far, the effect of environmental antibiotics exposure to offspring's growth remains unclear. Here we aimed to evaluate whether and to what extent environmental antibiotics exposure is associated with fetal and postnatal growth. A total of 735 pregnant women and their full-term offspring from the Shanghai Obesity Birth Cohort were involved in the study. Maternal urine specimen was collected during the third trimester, and urinary concentration of fifteen environmental antibiotics was measured by liquid chromatography-tandem mass spectrometry and enzymatic method. Children were followed at birth, 12, 24 and 60 months, and growth parameters of the weight and height of children were recorded. Linear regression model was applied, and it was found that maternal veterinary antibiotic (VA) concentration was negatively associated with birth weight and ponderal index [per natural-logarithm (ln)-unit: adjusted ß (95% confidence interval, CI) = - 42.1 (- 74.0, - 10.3) for birth weight, -0.11 (- 0.19, - 0.02) for birth weight z-score, and - 0.03 (- 0.05, - 0.002) for ponderal index]. Regarding specific VA, each ln-unit increment of florfenicol concentrations was likely to be associate with 39.7 g (95%CI: - 69.3, - 10.1) reduced birth weight, 0.10 (95%CI: - 0.18, - 0.02) reduced birth weight z-score, and 0.02 g/cm3 (95%CI: - 0.04, - 0.00) reduced ponderal index. Ciprofloxacin, a preferred-as-veterinary antibiotic, showed a similar dose-response relationship with neonatal anthropometric parameters to florfenicol. However, these adverse effects diminished as children grew up to 12-, 24- and 60-month-old. Larger prospective cohort studies and animal experiments are warranted to verify the hypothesis that environmental antibiotics exposure in early life, even at low doses, may cause fetal growth restriction.


Assuntos
Antibacterianos , Monitoramento Biológico , Antibacterianos/farmacologia , Coorte de Nascimento , Peso ao Nascer , Pré-Escolar , China , Feminino , Desenvolvimento Fetal , Humanos , Exposição Materna , Gravidez , Estudos Prospectivos
14.
Front Microbiol ; 12: 604313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712206

RESUMO

Background: Triclosan (TCS) is a widely used antibacterial agent in personal care products and is ubiquitous in the environment. We aimed to examine whether TCS exposure affects microbiota in the gastrointestinal tract of zebrafish. Methods: After exposure to TCS 0 (Dimethyl Sulphoxide, DMSO control), 0.03, 0.3, 3, 30, 100, and 300ng/ml, respectively, from day 0 to 120days post fertilization (dpf), or for 7days in adult 4-month zebrafish, the long- and short-term impact of TCS exposure on the microbiome in the gastrointestinal tract was evaluated by analyzing 16S rRNA gene V3-V4 region sequencing. Results: The top two most dominant microbiota phyla were Proteobacteria and Fusobacteria phylum in all zebrafish groups. In TCS exposure 0-120 dpf, compared with DMSO control, the mean number of microbial operational taxonomic units (OTUs) was 54.46 lower (p<0.0001), Chao indice 41.40 lower (p=0.0004), and Ace indice 34.10 lower (p=0.0044) in TCS 300ng/ml group, but no change was observed in most of the other TCS concentrations. PCoA diagram showed that the microbial community in the long-term TCS 300ng/ml exposure group clustered differently from those in the DMSO control and other TCS exposure groups. A shorter body length of the zebrafish was observed in the long-term TCS exposure at 0.03, 100, and 300ng/ml. For 7-day short-term exposure in adult zebrafish, no difference was observed in alpha or beta diversity of microbiota nor the relative abundance of Proteobacteria or Fusobacteria phylum among DMSO control and any TCS levels, but a minor difference in microbial composition was observed for TCS exposure. Conclusions: Long-term exposure to high TCS concentration in a window from early embryonic life to early adulthood may reduce diversity and alter the composition of microbiota in the gastrointestinal tract. The effect of short-term TCS exposure was not observed on the diversity of microbiota but there was a minor change of microbial composition in adult zebrafish with TCS exposure.

15.
Ecotoxicol Environ Saf ; 223: 112546, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34330038

RESUMO

Trace levels of oxytetracycline (OTC)-a veterinary antibiotic and feed additive-are widespread in the environment. Studies revealed that OTC potentially impairs thyroid function, which may affect neurobehaviour; however, the impact of exposure to environmental concentrations of OTC on adult neurobehaviour is unknown. In this study, the effects of OTC on zebrafish after 30-day exposure were investigated. The total swimming distance was significantly increased under vibration and light/dark stimulation, while time spent in the white area was prolonged during the black/white preference test, indicating that the zebrafish became bolder and more impulsive under low OTC exposure. Additionally, monoamine neurotransmitter (5-hydroxytryptamine, dopamine, norepinephrine) levels were decreased and gene expression of monoamine oxidase (mao) involved in neurotransmitter metabolism was upregulated at the transcription level after OTC exposure. Because triiodothyronine (T3) levels were enhanced following exposure to OTC, we speculated that T3 may mediate OTC damage to the nervous system. Our simulated molecular docking analysis showed that OTC combined with the sodium iodide cotransporter protein may result in excessive T3 synthesis. We further exposed zebrafish to T3, and they exhibited similar behaviour to the OTC exposure group. In conclusion, environmental OTC may activate monoamine oxidase and enhance the metabolism of monoaminergic neurotransmitters via T3, thereby inducing abnormal neurobehaviour.


Assuntos
Oxitetraciclina , Animais , Antibacterianos/toxicidade , Simulação de Acoplamento Molecular , Oxitetraciclina/toxicidade , Tri-Iodotironina , Peixe-Zebra
16.
Mol Med Rep ; 23(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33880577

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a major histological type of esophageal cancer, identified as a leading cause of tumor­associated death worldwide. In addition, long non­coding RNA (lncRNA) BRAF­activated non­coding RNA (BANCR) expression is increased in the plasma of patients with ESCC, which can be reversed by tumor resection. Thus, the aim of the present study was to investigate the underlying mechanism of BANCR in ESCC progression. The relative mRNA expression of BANCR was determined via reverse transcription­quantitative PCR. The cell behaviors of Eca­109 cells were detected using Cell Counting Kit­8, colony formation, wound healing and Transwell chamber assays. Finally, the expression levels of proteins involved in the Raf/MEK/ERK signaling pathway and cell metastasis were analyzed with western blotting. The results revealed that lncRNA BANCR was highly expressed in ESCC cells compared with in normal esophageal cells. BANCR overexpression enhanced proliferation, migration and invasion of ESCC cells, and BANCR silencing exerted opposite effects. Moreover, BANCR overexpression induced activation of the Raf/MEK/ERK signaling pathway in ESCC cells. Notably, U0126, a specific MEK inhibitor, decreased MEK and ERK expression, and blocked the promotive effects of BANCR overexpression on the proliferation, migration and invasion of ESCC cells. Overall, lncRNA BANCR facilitated the proliferation, migration and invasion of ESCC cells via the Raf/MEK/ERK signaling pathway. Thus, lncRNA BANCR may be a promising target for inhibiting ESCC growth and metastasis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , RNA Longo não Codificante/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Progressão da Doença , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , RNA Longo não Codificante/genética , Quinases raf/metabolismo
17.
Int J Hyperthermia ; 38(1): 13-21, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33491511

RESUMO

Aim: Magnetic hydrogels (MHGs) have been proposed to avoid the redistribution and loss of magnetic nanoparticles (MNPs) when administrated by intratumoral injection. However, the requirement of complex cooling systems and temperature monitoring systems still hinder the clinical application of MHGs. This study investigates the feasibility of developing an MHG to realize the self-regulation of hyperthermia temperature. Methods: The MHG was developed by dispersing the MNPs with self-regulating temperature property into the temperature-sensitive hydrogel through physical crosslinking. The MHG's gelation temperature was tested by measuring the storage modulus and loss modulus on a rotational rheometer. The biocompatibility of the MHG and MNPs was characterized by CCK-8 assay against HaCaT cells. The in vivo magnetic heating property was examined through monitoring the temperature in the MHG on mice back upon the application of the alternating magnetic field (400 ± 5 Oe, 100 ± 5 kHz) every week for successive six weeks. Results: The gelation temperature of the MHG falls in 28.4°C-37.4°C. At in vivo applied concentration of 80 mg/mL, the MHG exhibits over 80% cell viability after 72 h, significantly higher than 50% cell viability of the MNPs (p<0.001). The MHG's stable magnetic hyperthermia temperatures in vivo are in the range of 43.4°C-43.8°C. Conclusions: The developed MHG can be injected using a syringe and will solidify upon body temperature. The biocompatibility is improved after the MNPs being made into MHG. The MHG can self-regulate the temperature for six weeks, exhibiting application potential for self-regulating temperature hyperthermia.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Animais , Hidrogéis , Hipertermia , Campos Magnéticos , Camundongos , Temperatura
18.
Arthritis Rheumatol ; 73(3): 448-458, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33174383

RESUMO

OBJECTIVE: To assess the efficacy of intensive acupuncture (3 times weekly for 8 weeks) versus sham acupuncture for knee osteoarthritis (OA). METHODS: In this multicenter, randomized, sham-controlled trial, patients with knee OA were randomly assigned to receive electroacupuncture (EA), manual acupuncture (MA), or sham acupuncture (SA) 3 times weekly for 8 weeks. Participants, outcome assessors, and statisticians were blinded with regard to treatment group assignment. The primary outcome measure was response rate, which is the proportion of participants who simultaneously achieved minimal clinically important improvement in pain and function by week 8. The primary analysis was conducted using a Z test for proportions in the modified intent-to-treat population, which included all randomized participants who had ≥1 post-baseline measurement. RESULTS: Of the 480 participants recruited in the trial, 442 were evaluated for efficacy. The response rates at week 8 were 60.3% (91 of 151), 58.6% (85 of 145), and 47.3% (69 of 146) in the EA, MA, and SA groups, respectively. The between-group differences were 13.0% (97.5% confidence interval [97.5% CI] 0.2%, 25.9%; P = 0.0234) for EA versus SA and 11.3% (97.5% CI -1.6%, 24.4%; P = 0.0507) for MA versus SA. The response rates in the EA and MA groups were both significantly higher than those in the SA group at weeks 16 and 26. CONCLUSION: Among patients with knee OA, intensive EA resulted in less pain and better function at week 8, compared with SA, and these effects persisted though week 26. Intensive MA had no benefit for knee OA at week 8, although it showed benefits during follow-up.


Assuntos
Terapia por Acupuntura/métodos , Eletroacupuntura/métodos , Osteoartrite do Joelho/terapia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/fisiopatologia , Medição da Dor , Placebos , Resultado do Tratamento
19.
Front Endocrinol (Lausanne) ; 11: 567955, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117283

RESUMO

Fetuin-A is a multifunctional glycoprotein that has been implicated in insulin resistance and bone metabolism. We assessed whether fetuin-A is associated with poor or excessive fetal growth. In the Shanghai Birth Cohort, we conducted a nested case-control study of 60 trios of small-for-gestational-age (SGA, birth weight <10th percentile), optimal-for-gestational-age (OGA, 25-75th, the reference) and large-for-gestational-age (LGA, >90th percentile) infants matched by sex and gestational age. Cord plasma concentrations of fetuin-A and fetal growth factors [insulin, proinsulin, insulin-like growth factor (IGF)-I and IGF-II] were measured. Cord plasma fetuin-A concentrations were higher in SGA (809.4 ± 306.9 µg/ml, P = 0.026) and LGA (924.2 ± 375.9 µg/ml, P < 0.001) relative to OGA (680.7 ± 262.1 µg/ml) newborns, and were not correlated to insulin, proinsulin, IGF-I and IGF-II (all P > 0.2). Higher fetuin-A concentrations were associated with increased risks of SGA [OR = 1.67 (1.08-2.58) per SD increment, P = 0.024] and LGA [OR = 2.36 (1.53-3.66), P < 0.001]. Adjusting for maternal and neonatal characteristics and fetal growth factors, the elevated risk changed little for LGA [adjusted OR = 2.28 (1.29-4.01), P = 0.005], but became non-significant for SGA (P = 0.202). Our study is the first to demonstrate that fetuin-A may be involved in excessive fetal growth. This association is independent of fetal growth factors.


Assuntos
Peso ao Nascer/fisiologia , Desenvolvimento Fetal/fisiologia , Idade Gestacional , Recém-Nascido Pequeno para a Idade Gestacional/sangue , alfa-2-Glicoproteína-HS/metabolismo , Biomarcadores/sangue , Estudos de Casos e Controles , China/epidemiologia , Estudos de Coortes , Feminino , Humanos , Recém-Nascido , Gravidez
20.
Aquat Toxicol ; 227: 105608, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32858424

RESUMO

As a feed additive in agriculture, the antibiotic oxytetracycline (OTC) has become widely distributed in the natural environment, leading to the exposure of many organisms to low doses of OTC. Although OTC is clinically contraindicated in children because of its multiple side effects, the effect of exposure to low doses of environmental OTC on children is unknown, particularly during development. In this study, we investigated the effects of OTC on the thyroid endocrine system in zebrafish, through determinations of the whole-body contents of triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH) by enzyme-linked immunosorbent assay, and analysis of the mRNA expression of regulatory genes involved in the hypothalamus-pituitary-thyroid (HPT) axis using quantitative real-time polymerase chain reaction. Zebrafish embryos were exposed to OTC at environmentally relevant concentrations from 2 h to 120 days post-fertilisation. After exposure to OTC at 1,000 and 5,000 ng/L, T3 contents were significantly enhanced (37.8% and 45.1%, respectively) and TSH contents were reduced (16% and 16.3%, respectively) compared with those in the controls. The OTC-driven increase in the transcription of genes involved in thyroid synthesis (tpo and nis) may be responsible for the altered T3 levels. These data indicate that OTC may cause thyroid dysfunction and lead to reduced TSH secretion owing to enhanced negative feedback control of the HPT axis. Meanwhile, a decrease in body length, weight, and BMI and an increase in heart rate were observed with increasing OTC exposure. In conclusion, our results indicate that long-term exposure to low concentrations of OTC may alter the transcription of key genes involved in the HPT axis, as well as T3 and TSH contents, thereby disrupting the thyroid system and affecting the growth and development of zebrafish.


Assuntos
Oxitetraciclina/toxicidade , Glândula Tireoide/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Disruptores Endócrinos/toxicidade , Tireotropina , Tiroxina/metabolismo , Tri-Iodotironina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...