Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(4)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37106656

RESUMO

Spectral computed tomography (spectral CT) is a promising medical imaging technology because of its ability to provide information on material characterization and quantification. However, with an increasing number of basis materials, the nonlinearity of measurements causes difficulty in decomposition. In addition, noise amplification and beam hardening further reduce image quality. Thus, improving the accuracy of material decomposition while suppressing noise is pivotal for spectral CT imaging. This paper proposes a one-step multi-material reconstruction model as well as an iterative proximal adaptive decent method. In this approach, a proximal step and a descent step with adaptive step size are designed under the forward-backward splitting framework. The convergence analysis of the algorithm is further discussed according to the convexity of the optimization objective function. For simulation experiments with different noise levels, the peak signal-to-noise ratio (PSNR) obtained by the proposed method increases approximately 23 dB, 14 dB, and 4 dB compared to those of other algorithms. Magnified areas of thorax data further demonstrated that the proposed method has a better ability to preserve details in tissues, bones, and lungs. Numerical experiments verify that the proposed method efficiently reconstructed the material maps, and reduced noise and beam hardening artifacts compared with the state-of-the-art methods.

2.
Quant Imaging Med Surg ; 13(2): 889-911, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36819241

RESUMO

Background: Multienergy computed tomography (MECT) is a promising imaging modality for material decomposition, lesion detection, and other clinical applications. However, there is an urgent need to design efficient and accurate algorithms to solve the inverse problems related to spectral reconstruction and improve image quality, especially under low-dose and incomplete datasets. The key issue for MECT reconstruction is how to efficiently describe the interchannel and intrachannel priors in multichannel images. Methods: In this model, in order to correlate the similarities of interchannel images and regularize the multichannel images, the global, local, and nonlocal priors are jointly integrated into the low-dose MECT reconstruction model. First, the subspace decomposition method first employs the global low-rankness to map the original MECT images to the low-dimensional eigenimages. Then, nonlocal self-similarity of the eigenimages is cascaded into the optimization model. Additionally, the L0 quasi-norm on gradient images is incorporated into the proposed method to further enhance the local sparsity of intrachannel images. The alternating direction method is applied to solve the optimization model in an iterative scheme. Results: Simulation, preclinical, and real datasets were applied to validate the effectiveness of the proposed method. From the simulation dataset, the new method was found to reduce the root-mean-square error (RMSE) by 42.31% compared with the latest research fourth-order nonlocal tensor decomposition MECT reconstruction (FONT-SIR) method under 160 projection views. The calculation time of an iteration for the proposed method was 23.07% of the FONT-SIR method. The results of material decomposition in real mouse data further confirmed the accuracy of the proposed method for different materials. Conclusions: We developed a method in which the global, local, and nonlocal priors are jointly used to develop the reconstruction model for low-dose MECT, where the global low-rankness and nonlocal prior are cascaded by subspace decomposition and block-matching, and the L0 sparsity is applied to express the local prior. The results of the experiments demonstrate that the proposed method based on subspace improves computational efficiency and has advantages in noise suppression and structure preservation over competing algorithms.

3.
J Xray Sci Technol ; 31(2): 319-336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683486

RESUMO

BACKGROUND: Computed tomography (CT) plays an important role in the field of non-destructive testing. However, conventional CT images often have blurred edge and unclear texture, which is not conducive to the follow-up medical diagnosis and industrial testing work. OBJECTIVE: This study aims to generate high-resolution CT images using a new CT super-resolution reconstruction method combining with the sparsity regularization and deep learning prior. METHODS: The new method reconstructs CT images through a reconstruction model incorporating image gradient L0-norm minimization and deep image priors using a plug-and-play super-resolution framework. The deep learning priors are learned from a deep residual network and then plugged into the proposed new framework, and alternating direction method of multipliers is utilized to optimize the iterative solution of the model. RESULTS: The simulation data analysis results show that the new method improves the signal-to-noise ratio (PSNR) by 7% and the modulation transfer function (MTF) curves show that the value of MTF50 increases by 0.02 factors compared with the result of deep plug-and-play super-resolution. Additionally, the real CT image data analysis results show that the new method improves the PSNR by 5.1% and MTF50 by 0.11 factors. CONCLUSION: Both simulation and real data experiments prove that the proposed new CT super-resolution method using deep learning priors can reconstruct CT images with lower noise and better detail recovery. This method is flexible, effective and extensive for low-resolution CT image super-resolution.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos , Simulação por Computador
4.
J Xray Sci Technol ; 31(1): 63-84, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36314189

RESUMO

PURPOSE: Low-dose computed tomography (LDCT) has promising potential for dose reduction in medical applications, while suffering from low image quality caused by noise. Therefore, it is in urgent need for developing new algorithms to obtain high-quality images for LDCT. METHODS: This study tries to exploit the sparse and low-rank properties of images and proposes a new algorithm based on subspace identification. The collection of transmission data is sparsely represented by singular value decomposition and the eigen-images are then denoised by block-matching frames. Then, the projection is regularized by the correlation information under the frame of prior image compressed sensing (PICCS). With the application of a typical analytical algorithm on the processed projection, the target images are obtained. Both numerical simulations and real data verifications are carried out to test the proposed algorithm. The numerical simulations data is obtained based on real clinical scanning three-dimensional data and the real data is obtained by scanning experimental head phantom. RESULTS: In simulation experiment, using new algorithm boots the means of PSNR and SSIM by 1 dB and 0.05, respectively, compared with BM3D under the Gaussian noise with variance 0.04. Meanwhile, on the real data, the proposed algorithm exhibits superiority over compared algorithms in terms of noise suppression, detail preservation and computational overhead. The means of PSNR and SSIM are improved by 1.84 dB and 0.1, respectively, compared with BM3D under the Gaussian noise with variance 0.04. CONCLUSION: This study demonstrates the feasibility and advantages of a new algorithm based on subspace identification for LDCT. It exploits the similarity among three-dimensional data to improve the image quality in a concise way and shows a promising potential on future clinical diagnosis.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Imagens de Fantasmas , Doses de Radiação , Processamento de Imagem Assistida por Computador/métodos
5.
J Xray Sci Technol ; 30(3): 613-630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342073

RESUMO

BACKGROUND: Image reconstruction for realistic medical images under incomplete observation is still one of the core tasks for computed tomography (CT). However, the stair-case artifacts of Total variation (TV) based ones have restricted the usage of the reconstructed images. OBJECTIVE: This work aims to propose and test an accurate and efficient algorithm to improve reconstruction quality under the idea of synergy between local and nonlocal regularizations. METHODS: The total variation combining the nonlocal means filtration is proposed and the alternating direction method of multipliers is utilized to develop an efficient algorithm. The first order approximation of linear expansion at intermediate point is applied to overcome the computation of the huge CT system matrix. RESULTS: The proposed method improves root mean squared error by 25.6% compared to the recent block-matching sparsity regularization (BMSR) on simulation dataset of 19 views. The structure similarities of image of the new method is higher than 0.95, while that of BMSR is about 0.92. Moreover, on real rabbit dataset of 20 views, the peak signal-to-noise ratio (PSNR) of the new method is 36.84, while using other methods PSNR are lower than 35.81. CONCLUSIONS: The proposed method shows advantages on noise suppression and detail preservations over the competing algorithms used in CT image reconstruction.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Algoritmos , Animais , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Coelhos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos
6.
Med Phys ; 49(4): 2486-2501, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35142376

RESUMO

PURPOSE: Spectral computed tomography (CT) based on the photon-counting detection system has the capability to produce energy-discriminative attenuation maps of objects with a single scan. However, the insufficiency of photons collected into the narrow energy bins results in high quantum noise levels causing low image quality. This work aims to improve spectral CT image quality by developing a novel regularization based on framelet tensor prior. METHODS: First, similar patches are extracted from highly correlated interchannel images in spectral and spatial domains, and stacked to form a third-order tensor after vectorization along the energy channels. Second, the framelet tensor nuclear norm (FTNN) is introduced and applied to construct the regularization to exploit the sparsity embedded in nonlocal similarity of spectral images, and thus the reconstruction problem is modeled as a constrained optimization. Third, an iterative algorithm is proposed by utilizing the alternating direction method of multipliers framework in which efficient solvers are developed for each subproblem. RESULTS: Both numerical simulations and real data verifications were performed to evaluate and validate the proposed FTNN-based method. Compared to the analytic, TV-based, and the state-of-the-art tensor-based methods, the proposed method achieves higher numerical accuracy on both reconstructed CT images and decomposed material maps in the mouse data indicating the capability in noise suppression and detail preservation of the proposed method. CONCLUSIONS: A framelet tensor sparsity-based iterative algorithm is proposed for spectral reconstruction. The qualitative and quantitative comparisons show a promising improvement of image quality, indicating its promising potential in spectral CT imaging.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Algoritmos , Animais , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Imagens de Fantasmas , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos
7.
Quant Imaging Med Surg ; 12(1): 653-674, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34993109

RESUMO

BACKGROUND: Compared with single-energy computed tomography (CT), dual-energy CT (DECT) can distinguish materials better. However, most DECT reconstruction theories require two full-scan projection datasets of different energies, and this requirement is hard to meet, especially for cases where a physical blockage disables a full circular rotation. Thus, it is critical to relax the requirements of data acquisition to promote the application of DECT. METHODS: A flexible one half-scan DECT scheme is proposed, which acquires two projection datasets on two-quarter arcs (one for each energy). The limited-angle problem of the one half-scan DECT scheme can be solved by a reconstruction method. Thus, a dual-domain dual-way estimation network called DoDa-Net is proposed by utilizing the ability of deep learning in non-linear mapping. Specifically, the dual-way mapping Generative Adversarial Network (DM-GAN) was first designed to mine the relationship between two different energy projection data. Two half-scan projection datasets were obtained, the data of which was twice that of the original projection dataset. Furthermore, the data transformation from the projection domain to the image domain was realized by the total variation (TV)-based method. In addition, the image processing network (Im-Net) was employed to optimize the image domain data. RESULTS: The proposed method was applied to a digital phantom and real anthropomorphic head phantom data to verify its effectiveness. The reconstruction results of the real data are encouraging and prove the proposed method's ability to suppress noise while preserving image details. Also, the experiments conducted on simulated data show that the proposed method obtains the closest results to the ground truth among the comparison methods. For low- and high-energy reconstruction, the peak signal-to-noise ratio (PSNR) of the proposed method is as high as 40.3899 and 40.5573 dB, while the PSNR of other methods is lower than 36.5200 dB. Compared with FBP, TV, and other GAN-based methods, the proposed method reduces root mean square error (RMSE) by, respectively, 0.0124, 0.0037, and 0.0016 for low-energy reconstruction, and 0.0102, 0.0028, and 0.0015 for high-energy reconstruction. CONCLUSIONS: The developed DoDa-Net model for the proposed one half-scan DECT scheme consists of two stages. In stage one, DM-GAN is used to realize the dual map of projection data. In stage two, the TV-based method is employed to transform the data from the projection domain to the image domain. Furthermore, the reconstructed image is processed by the Im-Net. According to the experimental results of qualitative and quantitative evaluation, the proposed method has advantages in detail preservation, indicating the potential of the proposed method in one half-scan DECT reconstruction.

8.
World J Clin Cases ; 9(31): 9617-9622, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34877298

RESUMO

BACKGROUND: Gallbladder polyps are one indication for cholecystectomy, but this procedure carries some disadvantages, including the potential for severe injury and high risk of post-operative complications. Laparoscopy combined with endoscopic surgery is a minimally invasive treatment option. We herein report a young patient with a gallbladder polyp who was successfully discharged from the hospital after laparoscopic-assisted endoscopy. This procedure may offer an alternative in the management of such lesions. CASE SUMMARY: A 24-year-old female patient was hospitalized primarily for a gallbladder polyp. Due to the surgical risk associated with cholecystectomy and the low post-operative quality of life, the woman underwent laparoscopic-assisted transumbilical gastroscopy for gallbladder-preserving polypectomy under endotracheal intubation and general anaesthesia. The operation went smoothly. CONCLUSION: We conclude laparoscopic-assisted transumbilical gastroscopy for gallbladder-preserving polypectomy is a safe and effective technique for the treatment of gallbladder polyps.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...