Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(32): 14306-14317, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39092829

RESUMO

Tropospheric ozone (O3) is a strong greenhouse gas, particularly in the upper troposphere (UT). Limited observations point to a continuous increase in UT O3 in recent decades, but the attribution of UT O3 changes is complicated by large internal climate variability. We show that the anthropogenic signal ("fingerprint") in the patterns of UT O3 increases is distinguishable from the background noise of internal variability. The time-invariant fingerprint of human-caused UT O3 changes is derived from a 16-member initial-condition ensemble performed with a chemistry-climate model (CESM2-WACCM6). The fingerprint is largest between 30°S and 40°N, especially near 30°N. In contrast, the noise pattern in UT O3 is mainly associated with the El Niño-Southern Oscillation (ENSO). The UT O3 fingerprint pattern can be discerned with high confidence within only 13 years of the 2005 start of the OMI/MLS satellite record. Unlike the UT O3 fingerprint, the lower tropospheric (LT) O3 fingerprint varies significantly over time and space in response to large-scale changes in anthropogenic precursor emissions, with the highest signal-to-noise ratios near 40°N in Asia and Europe. Our analysis reveals a significant human effect on Earth's atmospheric chemistry in the UT and indicates promise for identifying fingerprints of specific sources of ozone precursors.


Assuntos
Atmosfera , Ozônio , Ozônio/análise , Atmosfera/química , Humanos , Monitoramento Ambiental
2.
J Vis Exp ; (209)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39141553

RESUMO

Mounting evidence indicates that the immune response triggered by brain disorders (e.g., brain ischemia and autoimmune encephalomyelitis) occurs not only in the brain, but also in the skull. A key step toward analyzing changes in immune cell populations in both the brain and skull bone marrow after brain damage (e.g., stroke) is to obtain sufficient numbers of high-quality immune cells for downstream analyses. Here, two optimized protocols are provided for isolating immune cells from the brain and skull bone marrow. The advantages of both protocols are reflected in their simplicity, speed, and efficacy in yielding a large quantity of viable immune cells. These cells may be suitable for a range of downstream applications, such as cell sorting, flow cytometry, and transcriptomic analysis. To demonstrate the effectiveness of the protocols, immunophenotyping experiments were performed on stroke brains and normal brain skull bone marrow using flow cytometry analysis, and the results aligned with findings from published studies.


Assuntos
Encéfalo , Citometria de Fluxo , Crânio , Animais , Camundongos , Encéfalo/citologia , Encéfalo/imunologia , Crânio/citologia , Crânio/cirurgia , Citometria de Fluxo/métodos , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Acidente Vascular Cerebral/imunologia , Imunofenotipagem/métodos
3.
Genome Med ; 16(1): 95, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095897

RESUMO

BACKGROUND: Ischemic stroke elicits a complex and sustained immune response in the brain. Immunomodulatory treatments have long held promise for improving stroke outcomes, yet none have succeeded in the clinical setting. This lack of success is largely due to our incomplete understanding of how immune cells respond to stroke. The objective of the current study was to dissect the effect of permanent stroke on microglia, the resident immune cells within the brain parenchyma. METHODS: A permanent middle cerebral artery occlusion (pMCAO) model was used to induce ischemic stroke in young male and female mice. Microglia were sorted from fluorescence reporter mice after pMCAO or sham surgery and then subjected to single-cell RNA sequencing analysis. Various methods, including flow cytometry, RNA in situ hybridization, immunohistochemistry, whole-brain imaging, and bone marrow transplantation, were also employed to dissect the microglial response to stroke. Stroke outcomes were evaluated by infarct size and behavioral tests. RESULTS: First, we showed the morphologic and spatial changes in microglia after stroke. We then performed single-cell RNA sequencing analysis on microglia isolated from sham and stroke mice of both sexes. The data indicate no major sexual dimorphism in the microglial response to permanent stroke. Notably, we identified seven potential stroke-associated microglial clusters, including four major clusters characterized by a disease-associated microglia-like signature, a highly proliferative state, a macrophage-like profile, and an interferon (IFN) response signature, respectively. Importantly, we provided evidence that the macrophage-like cluster may represent the long-sought stroke-induced microglia subpopulation with increased CD45 expression. Lastly, given that the IFN-responsive subset constitutes the most prominent microglial population in the stroke brain, we used fludarabine to pharmacologically target STAT1 signaling and found that fludarabine treatment improved long-term stroke outcome. CONCLUSIONS: Our findings shed new light on microglia heterogeneity in stroke pathology and underscore the potential of targeting specific microglial populations for effective stroke therapies.


Assuntos
Encéfalo , AVC Isquêmico , Microglia , Animais , Microglia/metabolismo , Microglia/patologia , Feminino , Masculino , Camundongos , AVC Isquêmico/patologia , AVC Isquêmico/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Análise de Célula Única , Infarto da Artéria Cerebral Média/patologia , Camundongos Endogâmicos C57BL
4.
Adv Sci (Weinh) ; : e2402913, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023169

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent malignancies with a 5-year survival rate of only 15% in patients with advanced diseases. Tumor protein 63 (TP63), a master transcription factor (TF) in ESCC, cooperates with other TFs to regulate enhancers and/or promoters of target oncogenes, which in turn promotes tumorigenesis. TAR-DNA-binding protein-43 (TDP-43) is an RNA/DNA binding protein with elevated expression in several neoplasms. However, it remains unclear how TDP-43 contributes to ESCC progression. In this study, TDP-43 is identified as a novel oncogene with markedly upregulated expression in ESCC tissues through profiling expression levels of one hundred and fifty canonical RNA binding protein (RBP) genes in multiple ESCC patient cohorts. Importantly, TDP-43 boosted TP63 expression via post-transcriptionally stabilizing TP63 mRNAs as a RBP and promoting TP63 transcription as a TF binding to the TP63 promoter in ESCC cells. In contrast, the master TF TP63 also bound to the TDP-43 promoter, accelerated TDP-43 transcription, and caused a noticeable increase in TDP-43 expression in ESCC cells. The findings highlight TDP-43 as a viable therapeutic target for ESCC and uncover a hitherto unrecognized TDP-43/TP63 circuit in cancer.

5.
Front Biosci (Landmark Ed) ; 29(7): 270, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39082358

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a common microvascular complication of diabetes mellitus (DM). Ferroptosis is an atypical form of iron-dependent, modulated cell death that has been shown to occur in human umbilical vein endothelial cells (HUVECs). Leonurine (LEO) is a single active ingredient extracted from Leonurus japonicus Houtt. It has various biological activities, including anti-inflammatory and anti-cancer effects. However, whether LEO affects ferroptosis in DN has yet to be investigated. METHODS: An animal model of DN was established by subjecting C57/BL6 mice to a high-fat diet (HFD) while being induced with Streptozotocin (STZ). A cellular model of DN was established by exposing HUVECs to a high glucose (HG) concentration of 30 mM. RESULTS: LEO was found to improve DN and to attenuate the degree of glomerulosclerosis and tubular atrophy in the mouse model. Additionally, it markedly decreased the levels of ferroptosis markers. Molecular analyses revealed that LEO inhibited HG-induced oxidative stress in HUVECs, thereby decreasing endothelial cell (EC) dysfunction. Furthermore, LEO was found to reduce ferroptosis and reverse EC dysfunction by increasing the expression of glutathione peroxidase 4 (GPX4) and nuclear factor erythroid 2-related factor 2 (Nrf2). The suppression of Nrf2 in HG-induced HUVECs inhibited LEO-GPX4 axis-mediated ferroptosis and increased EC dysfunction. CONCLUSIONS: LEO exerts anti-DN effects both in vivo and in vitro by suppressing GPX4-mediated EC ferroptosis. Mechanistically, LEO appears to induce Nrf2-mediated GPX4 expression to inhibit ferroptosis, thereby reducing EC dysfunction. This study provides a new perspective on the treatment of diseases using natural medicines. It involves a novel form of cell death that could potentially lead to better treatment of DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ferroptose , Ácido Gálico , Células Endoteliais da Veia Umbilical Humana , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Humanos , Masculino , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Dieta Hiperlipídica/efeitos adversos , Ferroptose/efeitos dos fármacos , Ácido Gálico/análogos & derivados , Ácido Gálico/farmacologia , Ácido Gálico/uso terapêutico , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética
6.
Med Chem ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468522

RESUMO

BACKGROUND: Osteosarcoma (OS) currently demonstrates a rising incidence, ranking as the predominant primary malignant tumor in the adolescent demographic. Notwithstanding this trend, the pharmaceutical landscape lacks therapeutic agents that deliver satisfactory efficacy against OS. OBJECTIVE: This study aimed to authenticate the outcomes of prior research employing the HM and GEP algorithms, endeavoring to expedite the formulation of efficacious therapeutics for osteosarcoma. METHODS: A robust quantitative constitutive relationship model was engineered to prognosticate the IC50 values of innovative synthetic compounds, harnessing the power of gene expression programming. A total of 39 natural products underwent optimization via heuristic methodologies within the CODESSA software, resulting in the establishment of a linear model. Subsequent to this phase, a mere quintet of descriptors was curated for the generation of non-linear models through gene expression programming. RESULTS: The squared correlation coefficients and s2 values derived from the heuristics stood at 0.5516 and 0.0195, respectively. Gene expression programming yielded squared correlation coefficients and mean square errors for the training set at 0.78 and 0.0085, respectively. For the test set, these values were determined to be 0.71 and 0.0121, respectively. The s2 of the heuristics for the training set was discerned to be 0.0085. CONCLUSION: The analytic scrutiny of both algorithms underscores their commendable reliability in forecasting the efficacy of nascent compounds. A juxtaposition based on correlation coefficients elucidates that the GEP algorithm exhibits superior predictive prowess relative to the HM algorithm for novel synthetic compounds.

7.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38543139

RESUMO

Many pathologic states can lead to the accumulation of unfolded/misfolded proteins in cells. This causes endoplasmic reticulum (ER) stress and triggers the unfolded protein response (UPR), which encompasses three main adaptive branches. One of these UPR branches is mediated by protein kinase RNA-like ER kinase (PERK), an ER stress sensor. The primary consequence of PERK activation is the suppression of global protein synthesis, which reduces ER workload and facilitates the recovery of ER function. Ischemic stroke induces ER stress and activates the UPR. Studies have demonstrated the involvement of the PERK pathway in stroke pathophysiology; however, its role in stroke outcomes requires further clarification. Importantly, considering mounting evidence that supports the therapeutic potential of the PERK pathway in aging-related cognitive decline and neurodegenerative diseases, this pathway may represent a promising therapeutic target in stroke. Therefore, in this review, our aim is to discuss the current understanding of PERK in ischemic stroke, and to summarize pharmacologic tools for translational stroke research that targets PERK and its associated pathways.

8.
Pest Manag Sci ; 80(6): 2689-2697, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38327015

RESUMO

BACKGROUND: RNA interference (RNAi) is the sequence-dependent suppression of gene expression by double-stranded RNA (dsRNA). This is a promising strategy for the control of insect pests because dsRNA can be rationally designed to maximize efficacy and biosafety, the latter by using sequences that are found in target pests but are safe for non-target insects. However, this has yet to be optimized in aphids, destructive sap-sucking pests that also transmit plant viruses. We used the green peach aphid (Myzus persicae) as a case study to optimize the efficiency of RNAi by applying a novel fusion dsRNA design. RESULTS: Comparative transcriptomics revealed a number of genes that are induced in feeding aphids, and eight candidate genes were chosen as RNAi targets. To improve RNAi efficiency, our fusion dsRNA design approach combined optimal gene fragments (highly conserved in several aphid species but with less homology in beneficial insects such as the predator ladybeetle Propylea japonica) from three candidate genes. We compared this RNAi-based biological control approach with conventional chemical control using imidacloprid. We found that the fusion dsRNA strategy inhibited the aphid population to a significantly greater extent than single-target RNAi and did not affect ladybeetle fitness, allowing an additive effect between RNAi and natural predation, whereas imidacloprid was harmful to aphids and ladybeetles. CONCLUSION: Our fusion dsRNA design approach enhances the ability of RNAi to control aphids without harming natural predators. © 2024 Society of Chemical Industry.


Assuntos
Afídeos , Interferência de RNA , RNA de Cadeia Dupla , Afídeos/genética , Animais , RNA de Cadeia Dupla/genética , Besouros/genética , Controle Biológico de Vetores/métodos , Controle de Insetos/métodos , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia
9.
Arch Toxicol ; 98(3): 985-997, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38189915

RESUMO

Chronic infection with Hepatitis B virus (HBV) significantly increases the risk of hepatocellular carcinoma (HCC), particularly in Eastern Asia. However, only a subset of individuals with chronic HBV infection develop HCC, suggesting the role for genetic factors in HCC etiology. Despite genome-wide association studies (GWASs) identifying multiple single nucleotide polymorphisms (SNPs) associated with HBV-related HCC susceptibility, the underlying mechanisms and causal genetic polymorphisms remain largely unclear. To address this, we developed The Updated Integrative Functional Genomics Approach (TUIFGA), an methodology that combines data from transcription factor (TF) cistromics, ATAC-seq, DNAase-seq, and the 1000 Genomes Project to identify cancer susceptibility SNPs within TF-binding sites across human genome. Using TUIFGA, we discovered SNP rs13170300 which located in the TF MAZ binding motif of RPS14. The RPS14 rs13170300 was significantly associated with HCC risk in two case-control sets, with the T allele as the protective allele (Shandong discovery set: TT OR = 0.60, 95% CI = 0.49-0.74, P = 1.0 × 10-6; CT OR = 0.69, 95% CI = 0.55-0.86, P = 0.001; Jiangsu validation set: TT OR = 0.70, 95% CI = 0.56-0.87, P = 0.001; CT OR = 0.65, 95% CI = 0.53-0.82, P = 1.6 × 10-4). SNP rs13170300 affected MAZ binding in the RPS14 promoter, resulting in allele-specific changes in gene expression. RPS14 functions as a novel oncogene in HCC, specifically via activating the AKT signaling. Our findings present important insights into the functional genetics underlying HBV-related HCC development and may contribute to personalized approaches for cancer prevention and novel therapeutics.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Hepatite B Crônica/complicações , Hepatite B Crônica/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Polimorfismo de Nucleotídeo Único
10.
J Physiol Biochem ; 80(2): 249-260, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38158555

RESUMO

N6-methyladenosine (m6A) is one of the most abundant epitranscriptomic modifications on eukaryotic mRNA. Evidence has highlighted that m6A is altered in response to inflammation-related factors and it is closely associated with various inflammation-related diseases. Multiple subpopulations of myeloid cells, such as macrophages, dendritic cells, and granulocytes, are crucial for the regulating of immune process in inflammation-related diseases. Recent studies have revealed that m6A plays an important regulatory role in the functional of multiple myeloid cells. In this review, we comprehensively summarize the function of m6A modification in myeloid cells from the perspective of myeloid cell production, activation, polarization, and migration. Furthermore, we discuss how m6A-mediated myeloid cell function affects the progression of inflammation-related diseases, including autoimmune diseases, chronic metabolic diseases, and malignant tumors. Finally, we discuss the challenges encountered in the study of m6A in myeloid cells, intended to provide a new direction for the study of the pathogenesis of inflammation-related diseases.


Assuntos
Adenosina , Adenosina/análogos & derivados , Inflamação , Células Mieloides , Adenosina/metabolismo , Humanos , Inflamação/metabolismo , Células Mieloides/metabolismo , Animais , Doenças Autoimunes/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/imunologia , Neoplasias/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/imunologia , Doenças Metabólicas/patologia
11.
Front Oncol ; 13: 1289272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152366

RESUMO

Background: Most instances of small cell carcinoma originate from the lungs, while the gastrointestinal tract serves as a secondary site. Only a minuscule proportion of cases manifest within the urogenital system. Prostate small cell carcinoma (SCCP) represents an exceedingly uncommon pathological subtype within the realm of prostate cancer, displaying significant rarity in clinical settings. This scarcity has resulted in a paucity of adequate foundational and clinical research for SCCP treatment. While investigations have unveiled a certain therapeutic efficacy of radiotherapy and chemotherapy for SCCP, clinical practice has revealed suboptimal treatment outcomes. We hereby present a case report detailing the utilization of 177Lu-DOTA-TATE in the treatment of SCCP, aiming to investigate the therapeutic efficacy of 177Lu-DOTA-TATE for SCCP. Case presentation: A male patient in his 80s presented with elevated prostate-specific antigen (PSA) levels and underwent a biopsy that revealed prostate adenocarcinoma. The patient received CAB (bicalutamide + goserelin) therapy. One year later, disease progression was detected, and a second biopsy confirmed the presence of prostate small cell carcinoma. Following the diagnosis of prostate small cell carcinoma, the patient underwent two cycles of 177Lu-DOTA-TATE treatment. Subsequent to the treatment, the original lesions showed shrinkage, metastatic lesions disappeared, and there was significant improvement, approaching complete remission. Conclusion: SCCP exhibits a high degree of malignancy and aggressive invasiveness, currently lacking effective therapeutic modalities. The treatment course of this patient serves as compelling evidence for the efficacy of 177Lu-DOTA-TATE in managing SCCP, thereby opening new avenues for future SCCP treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA