Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Insect Sci ; 28(6): 1690-1707, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33118290

RESUMO

Validamycin has been widely used as a specific competitive inhibitor of trehalase. In our previous research, validamycin significantly inhibited trehalase activity and chitin synthesis in Diaphorina citri, resulting in abnormal phenotypes. However, the mechanism of validamycin's action on D. citri remains unclear. Here, using a comparative transcriptome analysis, 464 differentially expressed genes (DEGs) in D. citri were identified after validamycin treatment. A Gene Ontology enrichment analysis revealed that these DEGs were mainly involved in "small molecule process", "structural molecule activity" and "transition metal ion binding". DEGs involved in chitin metabolism, cuticle synthesis and insecticide detoxification were validated by reverse transcription quantitative polymerase chain reaction. The RNA interference of D. citri chitinase-like protein ENO3 and D. citri cuticle protein 7 genes significantly affected D. citri molting. Moreover, the recombinant chitinase-like protein ENO3 exhibited a chitin-binding property, and an antimicrobial activity against Bacillus subtilis. This study provides a first insight into the molecular changes in D. citri after exposure to validamycin and identifies two effective RNA interference targets for D. citri control.


Assuntos
Quitinases , Hemípteros , Inositol/análogos & derivados , Interferência de RNA , Transcriptoma , Animais , Quitina/biossíntese , Quitinases/antagonistas & inibidores , Quitinases/genética , Hemípteros/efeitos dos fármacos , Hemípteros/genética , Hemípteros/metabolismo , Inositol/farmacologia
2.
Insects ; 11(3)2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32156093

RESUMO

The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important transmission vector of the citrus greening disease Candidatus Liberibacter asiaticus (CLas). The D. citri midgut exhibits an important tissue barrier against CLas infection. However, the molecular mechanism of the midgut response to CLas infection has not been comprehensively elucidated. In this study, we identified 778 differentially expressed genes (DEGs) in the midgut upon CLas infection, by comparative transcriptome analyses, including 499 upregulated DEGs and 279 downregulated DEGs. Functional annotation analysis showed that these DEGs were associated with ubiquitination, the immune response, the ribosome, endocytosis, the cytoskeleton and insecticide resistance. KEGG enrichment analysis revealed that most of the DEGs were primarily involved in endocytosis and the ribosome. A total of fourteen DEG functions were further validated by reverse transcription quantitative PCR (RT-qPCR). This study will contribute to our understanding of the molecular interaction between CLas and D. citri.

3.
Front Plant Sci ; 7: 1324, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27708648

RESUMO

Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation will be useful to facilitate the creation of "clean" GM wheat containing only the foreign genes of agronomic importance.

4.
Pest Manag Sci ; 72(6): 1090-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26888776

RESUMO

Aphids (Aphididae) are major agricultural pests that cause significant yield losses of crop plants each year by inflicting damage both through the direct effects of feeding and by vectoring harmful plant viruses. Expression of double-stranded RNA (dsRNA) directed against suitable insect target genes in transgenic plants has been shown to give protection against pests through plant-mediated RNA interference (RNAi). Thus, as a potential alternative and effective strategy for insect pest management in agricultural practice, plant-mediated RNAi for aphid control has received close attention in recent years. In this review, the mechanism of RNAi in insects and the so far explored effective RNAi target genes in aphids, their potential applications in the development of transgenic plants for aphid control and the major challenges in this regard are reviewed, and the future prospects of using plant-mediated RNAi for aphid control are discussed. This review is intended to be a helpful insight into the generation of aphid-resistant plants through plant-mediated RNAi strategy. © 2016 Society of Chemical Industry.


Assuntos
Afídeos , Produtos Agrícolas , Controle de Insetos/métodos , Plantas Geneticamente Modificadas , Interferência de RNA , Animais , Produtos Agrícolas/genética , Produtos Agrícolas/parasitologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia
5.
J Integr Plant Biol ; 57(9): 770-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25644472

RESUMO

(E)-ß-Farnesene (EßF) synthase catalyses the production of EßF, which for many aphids is the main or only component of the alarm pheromone causing the repellence of aphids and also functions as a kairomone for aphids' natural enemies. Many plants possess EßF synthase genes and can release EßF to repel aphids. In order to effectively recruit the plant-derived EßF synthase genes for aphid control, by using chloroplast transit peptide (CTP) of the small subunit of Rubisco (rbcS) from wheat (Triticum aestivum L.), we targeted AaßFS1, an EßF synthase gene from sweet wormwood (Artemisia annua L.), to the chloroplast of tobacco to generate CTP + AaßFS1 transgenic lines. The CTP + AaßFS1 transgenic tobacco plants could emit EßF at a level up to 19.25 ng/day per g fresh tissues, 4-12 fold higher than the AaßFS1 transgenic lines without chloroplast targeting. Furthermore, aphid/parasitoid behavioral bioassays demonstrated that the CTP + AaßFS1 transgenic tobacco showed enhanced repellence to green peach aphid (Myzus persicae) and attracted response of its parasitoid Diaeretiella rapae, thus affecting aphid infestation at two trophic levels. These data suggest that the chloroplast is an ideal subcellular compartment for metabolic engineering of plant-derived EßF synthase genes to generate a novel type of transgenic plant emitting an alarm pheromone for aphid control.


Assuntos
Afídeos/fisiologia , Cloroplastos/enzimologia , Regulação da Expressão Gênica de Plantas , Nicotiana/enzimologia , Nicotiana/genética , Pirofosfatases/genética , Pirofosfatases/metabolismo , Animais , Interações Hospedeiro-Parasita , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética
6.
New Phytol ; 206(3): 1101-1115, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25644034

RESUMO

Aphids are important pests of wheat (Triticum aestivum) that affect crop production globally. Herbivore-induced emission of sesquiterpenes can repel pests, and farnesyl pyrophosphate synthase (FPS) is a key enzyme involved in sesquiterpene biosynthesis. However, fps orthologues in wheat and their functional roles in sesquiterpene synthesis and defence against aphid infestation are unknown. Here, two fps isoforms, Tafps1 and Tafps2, were identified in wheat. Quantitative real-time polymerase chain reaction (qRT-PCR) and in vitro catalytic activity analyses were conducted to investigate expression patterns and activity. Heterologous expression of these isoforms in Arabidopsis thaliana, virus-induced gene silencing (VIGS) in wheat and aphid behavioural assays were performed to understand the functional roles of these two isoforms. We demonstrated that Tafps1 and Tafps2 played different roles in induced responses to aphid infestation and in sesquiterpene synthesis. Heterologous expression in A. thaliana resulted in repulsion of the peach aphid (Myzus persicae). Wheat plants with these two isoforms transiently silenced were significantly attractive to grain aphid (Sitobion avenae). Our results provide new insights into induced defence against aphid herbivory in wheat, in particular, the different roles of the two Tafps isoforms in both sesquiterpene biosynthesis and defence against aphid infestation.


Assuntos
Afídeos/fisiologia , Geraniltranstransferase/química , Sesquiterpenos/metabolismo , Triticum/enzimologia , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Inativação Gênica , Geraniltranstransferase/genética , Herbivoria , Interações Hospedeiro-Parasita/genética , Isoenzimas/química , Isoenzimas/genética , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Análise de Sequência de Proteína , Triticum/genética
7.
J Integr Plant Biol ; 54(5): 282-99, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22348813

RESUMO

Aphids are major agricultural pests that cause significant yield losses of crop plants each year. Excessive dependence on insecticides for long-term aphid control is undesirable because of the development of insecticide resistance, the potential negative effects on non-target organisms and environmental pollution. Transgenic crops engineered for resistance to aphids via a non-toxic mode of action could be an efficient alternative strategy. (E)-ß-Farnesene (EßF) synthases catalyze the formation of EßF, which for many pest aphids is the main component of the alarm pheromone involved in the chemical communication within these species. EßF can also be synthesized by certain plants but is then normally contaminated with inhibitory compounds. Engineering of crop plants capable of synthesizing and emitting EßF could cause repulsion of aphids and also the attraction of natural enemies that use EßF as a foraging cue, thus minimizing aphid infestation. In this review, the effects of aphids on host plants, plants' defenses against aphid herbivory and the recruitment of natural enemies for aphid control in an agricultural setting are briefly introduced. Furthermore, the plant-derived EßF synthase genes cloned to date along with their potential roles in generating novel aphid resistance via genetically modified approaches are discussed.


Assuntos
Afídeos/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/parasitologia , Resistência à Doença/genética , Genes de Plantas/genética , Engenharia Metabólica/métodos , Pirofosfatases/genética , Sequência de Aminoácidos , Animais , Produtos Agrícolas/imunologia , Dados de Sequência Molecular , Plantas Geneticamente Modificadas
8.
J Plant Res ; 122(1): 121-30, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19067111

RESUMO

A gene encoding Hordeum vulgare dehydration-responsive element binding protein 1 (HvDREB1), a member of the A-2 subgroup of the DREB subfamily, was isolated from barley seedlings. A subcellular localization assay revealed accumulation of HvDREB1 protein in the nucleus. As a trans-acting factor, HvDREB1 was able to bind to DRE/CRT elements and transactivate reporter gene expression in yeast cells. A study of various deletion mutants of HvDREB1 proteins indicated that the transactivation activity was localized to the N-terminal region. Expression of the HvDREB1 gene in barley leaves was significantly induced by salt, drought, and low-temperature. In contrast to most A-2 subgroup members in Arabidopsis thaliana, HvDREB1 also responded to exogenous ABA. Overexpression of HvDREB1 activated a downstream gene, RD29A, under normal growth conditions and led to increased tolerance to salt stress in Arabidopsis plants. These results suggest that HvDREB1 produces a DRE-/CRT-binding transcription factor that may have an important role in improving salt tolerance in plants.


Assuntos
Hordeum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Água/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas , Hordeum/genética , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cloreto de Sódio/farmacologia , Ativação Transcricional
9.
Gene ; 407(1-2): 193-8, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17980516

RESUMO

The hypersensitive response (HR) is one of the most efficient forms of plant defense against biotrophic pathogens and results in localized cell death and the formation of necrotic lesions. In this study, a novel putative hypersensitive induced reaction (HIR) gene from wheat leaves infected by incompatible stripe rust pathogen CY23, designated as Ta-hir1, was identified by using rapid amplification of cDNA ends (RACE). Ta-hir1 encodes 284 amino acids, with a predicted molecular mass of 31.31 KDa. A phylogenetic analysis showed that Ta-hir1 was highly homologous to Hv-hir1 from barley at both cDNA and deduced amino-acid levels. Amino-acid sequence analysis of the wheat HIR protein indicated the presence of the SPFH (Stomatins, Prohibitins, Flotillins and HflK/C) protein domain typical for stomatins which served as a negative regulator of univalent cation permeability, especially for potassium. The expression profile of the Ta-hir1 transcript detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and real-time polymerase chain reaction (real time-PCR), respectively, showed that the highest expression occurred 48 h post inoculation (hpi), which is consistent with our previous histopathology observations during the stripe rust fungus-wheat incompatible reaction.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Genes de Plantas , Doenças das Plantas/genética , Triticum/genética , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/classificação , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Fungos/patogenicidade , Expressão Gênica , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA