Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Digit Health ; 5(8): e515-e524, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37393162

RESUMO

BACKGROUND: Improved markers for predicting recurrence are needed to stratify patients with localised (stage I-III) renal cell carcinoma after surgery for selection of adjuvant therapy. We developed a novel assay integrating three modalities-clinical, genomic, and histopathological-to improve the predictive accuracy for localised renal cell carcinoma recurrence. METHODS: In this retrospective analysis and validation study, we developed a histopathological whole-slide image (WSI)-based score using deep learning allied to digital scanning of conventional haematoxylin and eosin-stained tumour tissue sections, to predict tumour recurrence in a development dataset of 651 patients with distinctly good or poor disease outcome. The six single nucleotide polymorphism-based score, which was detected in paraffin-embedded tumour tissue samples, and the Leibovich score, which was established using clinicopathological risk factors, were combined with the WSI-based score to construct a multimodal recurrence score in the training dataset of 1125 patients. The multimodal recurrence score was validated in 1625 patients from the independent validation dataset and 418 patients from The Cancer Genome Atlas set. The primary outcome measured was the recurrence-free interval (RFI). FINDINGS: The multimodal recurrence score had significantly higher predictive accuracy than the three single-modal scores and clinicopathological risk factors, and it precisely predicted the RFI of patients in the training and two validation datasets (areas under the curve at 5 years: 0·825-0·876 vs 0·608-0·793; p<0·05). The RFI of patients with low stage or grade is usually better than that of patients with high stage or grade; however, the RFI in the multimodal recurrence score-defined high-risk stage I and II group was shorter than in the low-risk stage III group (hazard ratio [HR] 4·57, 95% CI 2·49-8·40; p<0·0001), and the RFI of the high-risk grade 1 and 2 group was shorter than in the low-risk grade 3 and 4 group (HR 4·58, 3·19-6·59; p<0·0001). INTERPRETATION: Our multimodal recurrence score is a practical and reliable predictor that can add value to the current staging system for predicting localised renal cell carcinoma recurrence after surgery, and this combined approach more precisely informs treatment decisions about adjuvant therapy. FUNDING: National Natural Science Foundation of China, and National Key Research and Development Program of China.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Prognóstico , Estudos Retrospectivos , Biomarcadores Tumorais , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Neoplasias Renais/patologia
2.
J Mol Cell Biol ; 13(5): 347-360, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-33196842

RESUMO

Accumulating evidence indicates that the alternative splicing program undergoes extensive changes during cancer development and progression. The RNA-binding protein QKI-5 is frequently downregulated and exhibits anti-tumor activity in lung cancer. Howeve-r, little is known about the functional targets and regulatory mechanism of QKI-5. Here, we report that upregulation of exon 14 inclusion of cytoskeletal gene Adducin 3 (ADD3) significantly correlates with a poor prognosis in lung cancer. QKI-5 inhibits cell proliferation and migration in part through suppressing the splicing of ADD3 exon 14. Through genome-wide mapping of QKI-5 binding sites in vivo at nucleotide resolution by iCLIP-seq analysis, we found that QKI-5 regulates alternative splicing of its target mRNAs in a binding position-dependent manner. By binding to multiple sites in an upstream intron region, QKI-5 represses the splicing of ADD3 exon 14. We also identified several QKI mutations in tumors, which cause dysregulation of the splicing of QKI targets ADD3 and NUMB. Taken together, our results reveal that QKI-mediated alternative splicing of ADD3 is a key lung cancer-associated splicing event, which underlies in part the tumor suppressor function of QKI.


Assuntos
Processamento Alternativo/genética , Proteínas de Ligação a Calmodulina/genética , Citoesqueleto/genética , Neoplasias Pulmonares/genética , Proteínas de Ligação a RNA/genética , Células A549 , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Éxons/genética , Genes Supressores de Tumor/fisiologia , Células HEK293 , Humanos , Íntrons/genética , Neoplasias Pulmonares/patologia , RNA Mensageiro/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...