Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(20)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37887290

RESUMO

Febrile seizure (FS), which occurs as a response to fever, is the most common seizure that occurs in infants and young children. FS is usually accompanied by diverse neuropsychiatric symptoms, including impaired social behaviors; however, research on neuropsychiatric disorders and hippocampal inflammatory changes following febrile seizure occurrences is very limited. Here, we provide evidence linking FS occurrence with ASD pathogenesis in rats. We developed an FS juvenile rats model and found ASD-like abnormal behaviors including deficits in social novelty, repetitive behaviors, and hyperlocomotion. In addition, FS model juvenile rats showed enhanced levels of gliosis and inflammation in the hippocampal CA2 region and cerebellum. Furthermore, abnormal levels of social and repetitive behaviors persisted in adults FS model rats. These findings suggest that the inflammatory response triggered by febrile seizures in young children could potentially serve as a mediator of social cognitive impairments.


Assuntos
Convulsões Febris , Humanos , Criança , Ratos , Animais , Pré-Escolar , Convulsões Febris/complicações , Convulsões Febris/patologia , Região CA2 Hipocampal/patologia , Ratos Sprague-Dawley , Citocinas , Gliose/complicações
2.
Cells ; 11(20)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291094

RESUMO

Febrile seizure (FS) is a common type of seizure occurring in human during infancy and childhood. Although an epileptic seizure is associated with psychiatric disorders and comorbid diseases such as depression, anxiety, autism spectrum disorders, sleep disorders, attention deficits, cognitive impairment, and migraine, the causal relationship between FS and psychiatric disorders is poorly understood. The objective of the current study was to investigate the relationship of FS occurrence in childhood with the pathogenesis of anxiety disorder and depression using an FS rat model. We induced febrile seizures in infantile rats (11 days postnatal) using a mercury vapor lamp. At 3 weeks and 12 weeks after FS induction, we examined behaviors and recorded local field potentials (LFPs) to assess anxiety and depression disorder. Interestingly, after FS induction in infantile rats, anxiogenic behaviors and depression-like phenotypes were found in both adult and juvenile FS rats. The analysis of LFPs revealed that 4-7 Hz hippocampal theta rhythm, a neural oscillatory marker for anxiety disorder, was significantly increased in FS rats compared with their wild-type littermates. Taken together, our findings suggest that FS occurrence in infants is causally related to increased levels of anxiety-related behaviors and depression-like symptoms in juvenile and adult rodents.


Assuntos
Mercúrio , Convulsões Febris , Humanos , Adulto , Lactente , Ratos , Animais , Convulsões Febris/induzido quimicamente , Convulsões Febris/patologia , Depressão/complicações , Hipocampo/patologia , Ansiedade/complicações
3.
Brain Sci ; 12(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35884712

RESUMO

Neurological disorders are prevalent in patients with chronic kidney disease (CKD). Vascular factors and uremic toxins are involved with cognitive impairment in CKD. In addition, vascular dementia-induced alterations in the structure and function of the hippocampus can lead to deficits in hippocampal synaptic plasticity and cognitive function. However, regardless of this clinical evidence, the pathophysiology of cognitive impairment in patients with CKD is not fully understood. We used male Sprague Dawley rats and performed 5/6 nephrectomy to observe the changes in behavior, field excitatory postsynaptic potential, and immunostaining of the hippocampus following CKD progression. We measured the hippocampus volume on magnetic resonance imaging scans in the controls (n = 34) and end-stage renal disease (ESRD) hemodialysis patients (n = 42). In four cognition-related behavior assays, including novel object recognition, Y-maze, Barnes maze, and classical contextual fear conditioning, we identified deficits in spatial working memory, learning and memory, and contextual memory, as well as the ability to distinguish familiar and new objects, in the rats with CKD. Immunohistochemical staining of Na+/H+ exchanger1 was increased in the hippocampus of the CKD rat models. We performed double immunofluorescent staining for aquaporin-4 and glial fibrillary acidic protein and then verified the high coexpression in the hippocampus of the CKD rat model. Furthermore, results from recoding of the field excitatory postsynaptic potential (fEPSP) in the hippocampus showed the reduced amplitude and slope of fEPSP in the CKD rats. ESRD patients with cognitive impairment showed a significant decrease in the hippocampus volume compared with ESRD patients without cognitive impairment or the controls. Our findings suggest that uremia resulting from decreased kidney function may cause the destruction of the blood-brain barrier and hippocampus-related cognitive impairment in CKD.

4.
J Korean Neurosurg Soc ; 65(5): 665-679, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35430790

RESUMO

OBJECTIVE: Patients with mild ischemic stroke experience various sequela and residual symptoms, such as anxious behavior and deficits in movement. Few approaches have been proved to be effective and safe therapeutic approaches for patients with mild ischemic stroke by acute stroke. Sildenafil (SIL), a phosphodiesterase-5 inhibitor (PDE5i), is a known remedy for neurodegenerative disorders and vascular dementia through its angiogenesis and neurogenesis effects. In this study, we investigated the efficacy of PDE5i in the emotional and behavioral abnormalities in rats with mild ischemic stroke. METHODS: We divided the rats into four groups as follows (n=20, respectively) : group 1, naïve; group 2, middle cerebral artery occlusion (MCAo30); group 3, MCAo30+SIL-pre; and group 4, MCAo30+SIL-post. In the case of drug administration groups, single dose of PDE5i (sildenafil citrate, 20 mg/kg) was given at 30-minute before and after reperfusion of MCAo in rats. After surgery, we investigated and confirmed the therapeutic effect of sildenafil on histology, immunofluorescence, behavioral assays and neural oscillations. RESULTS: Sildenafil alleviated a neuronal loss and reduced the infarction volume. And results of behavior task and immunofluorescence shown possibility that anti-inflammation process and improve motor deficits sildenafil treatment after mild ischemic stroke. Furthermore, sildenafil treatment attenuated the alteration of theta-frequency rhythm in the CA1 region of the hippocampus, a known neural oscillatory marker for anxiety disorder in rodents, induced by mild ischemic stroke. CONCLUSION: PDE5i as effective therapeutic agents for anxiety and movement disorders and provide robust preclinical evidence to support the development and use of PDE5i for the treatment of mild ischemic stroke residual disorders.

5.
Exp Ther Med ; 22(6): 1395, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34650643

RESUMO

Thioredoxin 1 (Trx1) serves a central role in redox homeostasis. It is involved in numerous other processes, including oxidative stress and apoptosis. However, to the best of our knowledge, the role of Trx1 in inflammation remains to be explored. The present study investigated the function and mechanism of cell permeable fused Tat-Trx1 protein in macrophages and a mouse model. Transduction levels of Tat-Trx1 were determined via western blotting. Cellular distribution of transduced Tat-Trx1 was determined by fluorescence microscopy. 2',7'-Dichlorofluorescein diacetate and TUNEL staining were performed to determine the production of reactive oxygen species and DNA fragmentation. Protein and gene expression were measured by western blotting and reverse transcription-quantitative PCR (RT-qPCR), respectively. Effects of skin inflammation were determined using hematoxylin and eosin staining, changes in ear weight and ear thickness, and RT-qPCR in ear edema animal models. Transduced Tat-Trx1 inhibited lipopolysaccharide-induced cytotoxicity and activation of NF-κB, MAPK and Akt. Additionally, Tat-Trx1 markedly reduced the production of inducible nitric oxide synthase, cyclooxygenase-2, IL-1ß, IL-6 and TNF-α in macrophages. In a 12-O-tetradecanoylphorbol-13-acetate-induced mouse model, Tat-Trx1 reduced inflammatory damage by inhibiting inflammatory mediator and cytokine production. Collectively, these results demonstrated that Tat-Trx1 could exert anti-inflammatory effects by inhibiting the production of pro-inflammatory mediators and cytokines and by modulating MAPK signaling. Therefore, Tat-Trx1 may be a useful therapeutic agent for diseases induced by inflammatory damage.

6.
Brain Sci ; 11(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209259

RESUMO

Increased prevalence of chronic kidney disease (CKD) and neurological disorders including cerebrovascular disease, cognitive impairment, peripheral neuropathy, and dysfunction of central nervous system have been reported during the natural history of CKD. Psychological distress and depression are serious concerns in patients with CKD. However, the relevance of CKD due to decline in renal function and the pathophysiology of emotional deterioration is not clear. Male Sprague Dawley rats were divided into three groups: sham control, 5/6 nephrectomy at 4 weeks, and 5/6 nephrectomy at 10 weeks. Behavior tests, local field potentials, and histology and laboratory tests were conducted and investigated. We provided direct evidence showing that CKD rat models exhibited anxiogenic behaviors and depression-like phenotypes, along with altered hippocampal neural oscillations at 1-12 Hz. We generated CKD rat models by performing 5/6 nephrectomy, and identified higher level of serum creatinine and blood urea nitrogen (BUN) in CKD rats than in wild-type, depending on time. In addition, the level of α-smooth muscle actin (α-SMA) and collagen I for renal tissue was markedly elevated, with worsening fibrosis due to renal failures. The level of anxiety and depression-like behaviors increased in the 10-week CKD rat models compared with the 4-week rat models. In the recording of local field potentials, the power of delta (1-4 Hz), theta (4-7 Hz), and alpha rhythm (7-12 Hz) was significantly increased in the hippocampus of CKD rats compared with wild-type rats. Together, our findings indicated that anxiogenic behaviors and depression can be induced by CKD, and these abnormal symptoms can be worsened as the onset of CKD was prolonged. In conclusion, our results show that the hippocampus is vulnerable to uremia.

7.
Free Radic Biol Med ; 172: 418-429, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34175438

RESUMO

Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and activated mTORC1 plays important roles for cellular survival in response to oxidative stress. However, the roles of PRAS40 in dopaminergic neuronal cell death have not yet been examined. Here, we examined the roles of Tat-PRAS40 in MPP+- and MPTP-induced dopaminergic neuronal cell death. Our results showed that Tat-PRAS40 effectively transduced into SH-SY5Y cells and inhibited DNA damage, ROS generation, and apoptotic signaling in MPP+-induced SH-SY5Y cells. Further, these protective mechanisms of Tat-PRAS40 protein display through phosphorylation of Tat-PRAS40, Akt and direct interaction with 14-3-3σ protein, but not via the mTOR-dependent signaling pathway. In a Parkinson's disease animal model, Tat-PRAS40 transduced into dopaminergic neurons in mouse brain and significantly protected against dopaminergic cell death by phosphorylation of Tat-PRAS40, Akt and interaction with 14-3-3σ protein. In this study, we demonstrated for the first time that Tat-PRAS40 directly protects against dopaminergic neuronal cell death. These results indicate that Tat-PRAS40 may provide a useful therapeutic agent against oxidative stress-induced dopaminergic neuronal cell death, which causes diseases such as PD.


Assuntos
Neurônios Dopaminérgicos , Estresse Oxidativo , Animais , Apoptose , Morte Celular , Camundongos , Espécies Reativas de Oxigênio
8.
Cells ; 9(8)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756411

RESUMO

Cannabinoid receptor-interacting protein 1a (CRIP1a) binds to the C-terminal domain of cannabinoid 1 receptor (CB1R) and regulates CB1R activities. In this study, we made Tat-CRIP1a fusion proteins to enhance CRIP1a penetration into neurons and brain and to evaluate the function of CRIP1a in neuroprotection following oxidative stress in HT22 hippocampal cells and transient forebrain ischemia in gerbils. Purified exogenous Tat-CRIP1a was penetrated into HT22 cells in a time and concentration-dependent manner and prevented H2O2-induced reactive oxygen species formation, DNA fragmentation, and cell damage. Tat-CRIP1a fusion protein also ameliorated the reduction of 14-3-3η expression by H2O2 treatment in HT22 cells. Ischemia-reperfusion damage caused motor hyperactivity in the open field test of gerbils; however, the treatment of Tat-CRIP1a significantly reduced hyperactivity 1 day after ischemia. Four days after ischemia, the administration of Tat-CRIP1a restored the loss of pyramidal neurons and decreased reactive astrocytosis and microgliosis induced by ischemic damage in the hippocampal cornu Ammonis (CA)1 region. Ischemic damage decreased 14-3-3η expression in all hippocampal sub-regions 4 days after ischemia; however, the treatment of Tat-CRIP1 ameliorated the reduction of 14-3-3η expression. These results suggest that Tat-CRIP1a attenuates neuronal damage and hyperactivity induced by ischemic damage, and it restores normal expression levels of 14-3-3η protein in the hippocampus.


Assuntos
Proteínas 14-3-3/genética , Produtos do Gene tat/genética , Isquemia/patologia , Proteínas de Membrana/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Proteínas 14-3-3/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Dano ao DNA , Gerbillinae , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Proteínas de Membrana/administração & dosagem , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia
9.
BMB Rep ; 53(4): 234-239, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32317084

RESUMO

Epilepsy is a chronic neurological disease characterized by spontaneous recurrent seizures and caused by various factors and mechanisms. Malfunction of the olfactory bulb is frequently observed in patients with epilepsy. However, the morphological changes in the olfactory bulb during epilepsy-induced neuropathology have not been elucidated. Therefore, in the present study, we investigated the expression of parvalbumin (PV), one of the calcium-binding proteins, and morphological changes in the rat main olfactory bulb (MOB) following pilocarpine- induced status epilepticus (SE). Pilocarpine-induced SE resulted in neuronal degeneration in the external plexiform layer (EPL) and glomerular layer (GL) of the MOB. PV immunoreactivity was observed in the neuronal somas and processes in the EPL and GL of the control group. However, six hours after pilocarpine administration, PV expression was remarkably decreased in the neuronal processes compared to the somas and the average number of PV-positive interneurons was significantly decreased. Three months after pilocarpine treatment, the number of PV-positive interneurons was also significantly decreased compared to the 6 hour group in both layers. In addition, the number of NeuN-positive neurons was also significantly decreased in the EPL and GL following pilocarpine treatment. In double immunofluorescence staining for PV and MAP2, the immunoreactivity for MAP2 around the PV-positive neurons was significantly decreased three months after pilocarpine treatment. Therefore, the present findings suggest that decreases in PV-positive GABAergic interneurons and dendritic density in the MOB induced impaired calcium buffering and reciprocal synaptic transmission. Thus, these alterations may be considered key factors aggravating olfactory function in patients with epilepsy. [BMB Reports 2020; 53(4): 234-239].


Assuntos
Bulbo Olfatório/metabolismo , Parvalbuminas/metabolismo , Estado Epiléptico/patologia , Animais , Dendritos/metabolismo , Modelos Animais de Doenças , Interneurônios/metabolismo , Masculino , Neurônios/metabolismo , Bulbo Olfatório/fisiopatologia , Parvalbuminas/genética , Pilocarpina/metabolismo , Pilocarpina/farmacologia , Ratos , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/genética , Transmissão Sináptica
10.
Brain Res Bull ; 131: 25-38, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28286184

RESUMO

Febrile seizure (FS) is the most common seizure type in infants and young children. FS may induce functional changes in the hippocampal circuitries. Abnormality of excitatory and inhibitory neurotransmissions was previously related to wide-spread seizure attack in the hippocampus following recurrent seizure onset. To clarify the involvement of expressional changes and functional alterations of hippocampal interneurons with epileptogenesis following FS, we investigated long-term effects following recurrent seizure in a hyperthermia-induced seizure animal model. At 12 weeks following FS, the recurrent seizure time period, local field potentials (LFP) revealed high amplitude potential and a sharp wave characteristic of epilepsy. Mossy fiber reorganization in the hippocampus was also detected as abnormal synaptic connection at 8 weeks. Calretinin (CR) -positive interneurons were transiently enhanced during epileptogenic period at 7-9 weeks after FS in the CA1 and DG region and it is double labeled with VGLUT-1. However, although GABAA-α1 immunoreactivities were un-changed as similar to control hippocampus at 7-9 weeks after seizure onset, its expression was significantly enhanced at 4 weeks and 12 weeks and it is colocalized with GABA. Furthermore, the field excitatory postsynaptic potential (fEPSP) and the paired-pulse responses including population spike (PS) latency, excitability ratio and PS2/PS1 ratio were markedly altered in the CA1 and DG region at 12 weeks after FS. Therefore, our findings in present study indicate that these time-dependent changes may be based on the persistent alterations of hippocampal neuronal circuits in balance between excitatory and inhibitory responses, and may lead to the epileptogenesis and spread of seizure activity following FS.


Assuntos
GABAérgicos/metabolismo , Convulsões Febris/fisiopatologia , Convulsões/fisiopatologia , Animais , Modelos Animais de Doenças , Epilepsia/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Ácido Glutâmico/metabolismo , Hipocampo/fisiopatologia , Interneurônios/fisiologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Convulsões/metabolismo , Transmissão Sináptica/efeitos dos fármacos
11.
Mol Brain ; 10(1): 1, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28052764

RESUMO

Oxidative stress plays an important role in the progression of various neuronal diseases including ischemia. Heat shock protein 22 (HSP22) is known to protect cells against oxidative stress. However, the protective effects and mechanisms of HSP22 in hippocampal neuronal cells under oxidative stress remain unknown. In this study, we determined whether HSP22 protects against hydrogen peroxide (H2O2)-induced oxidative stress in HT-22 using Tat-HSP22 fusion protein. We found that Tat-HSP22 transduced into HT-22 cells and that H2O2-induced cell death, oxidative stress, and DNA damage were significantly reduced by Tat-HSP22. In addition, Tat-HSP22 markedly inhibited H2O2-induced mitochondrial membrane potential, cytochrome c release, cleaved caspase-3, and Bax expression levels, while Bcl-2 expression levels were increased in HT-22 cells. Further, we showed that Tat-HSP22 transduced into animal brain and inhibited cleaved-caspase-3 expression levels as well as significantly inhibited hippocampal neuronal cell death in the CA1 region of animals in the ischemic animal model. In the present study, we demonstrated that transduced Tat-HSP22 attenuates oxidative stress-induced hippocampal neuronal cell death through the mitochondrial signaling pathway and plays a crucial role in inhibiting neuronal cell death, suggesting that Tat-HSP22 protein may be used to prevent oxidative stress-related brain diseases including ischemia.


Assuntos
Produtos do Gene tat/farmacologia , Proteínas de Choque Térmico/farmacologia , Hipocampo/patologia , Mitocôndrias/metabolismo , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Gerbillinae , Peróxido de Hidrogênio/farmacologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Chaperonas Moleculares , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Proteínas Recombinantes de Fusão/isolamento & purificação , Transdução Genética
12.
Int J Mol Med ; 38(1): 225-35, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27221790

RESUMO

Oxidative stress-induced apoptosis is associated with neuronal cell death and ischemia. The NOL3 [nucleolar protein 3 (apoptosis repressor with CARD domain)] protein protects against oxidative stress-induced cell death. However, the protective mechanism responsible for this effect as well as the effects of NOL3 against oxidative stress in ischemia remain unclear. Thus, we examined the protective effects of NOL3 protein on hydrogen peroxide (H2O2)-induced oxidative stress and the mechanism responsible for these effects in hippocampal neuronal HT22 cells and in an animal model of forebrain ischemia using Tat-fused NOL3 protein (Tat-NOL3). Purified Tat-NOL3 protein transduced into the H2O2-exposed HT22 cells and inhibited the production of reactive oxygen species (ROS), DNA fragmentation and reduced mitochondrial membrane potential (ΔΨm). In addition, Tat-NOL3 prevented neuronal cell death through the regulation of apoptotic signaling pathways including Bax, Bcl-2, caspase-2, -3 and -8, PARP and p53. In addition, Tat-NOL3 protein transduced into the animal brains and significantly protected against neuronal cell death in the CA1 region of the hippocampus by regulating the activation of microglia and astrocytes. Taken together, these findings demonstrate that Tat-NOL3 protein protects against oxidative stress-induced neuronal cell death by regulating oxidative stress and by acting as an anti-apoptotic protein. Thus, we suggest that Tat-NOL3 represents a potential therapeutic agent for protection against ischemic brain injury.


Assuntos
Proteínas Reguladoras de Apoptose/farmacologia , Apoptose/efeitos dos fármacos , Hipocampo/patologia , Proteínas Musculares/farmacologia , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Gerbillinae , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução Genética
13.
BMB Rep ; 49(7): 382-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27049109

RESUMO

Reactive oxygen species generated under oxidative stress are involved in neuronal diseases, including ischemia. Glutathione S-transferase pi (GSTpi) is a member of the GST family and is known to play important roles in cell survival. We investigated the effect of GSTpi against oxidative stress-induced hippocampal HT-22 cell death, and its effects in an animal model of ischemic injury, using a cell-permeable PEP-1-GSTpi protein. PEP-1-GSTpi was transduced into HT-22 cells and significantly protected against H2O2-treated cell death by reducing the intracellular toxicity and regulating the signal pathways, including MAPK, Akt, Bax, and Bcl-2. PEP-1-GSTpi transduced into the hippocampus in animal brains, and markedly protected against neuronal cell death in an ischemic injury animal model. These results indicate that PEP-1-GSTpi acts as a regulator or an antioxidant to protect against oxidative stressinduced cell death. Our study suggests that PEP-1-GSTpi may have potential as a therapeutic agent for the treatment of ischemia and a variety of oxidative stress-related neuronal diseases. [BMB Reports 2016; 49(7): 382-387].


Assuntos
Glutationa S-Transferase pi/metabolismo , Hipocampo/metabolismo , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisteamina/análogos & derivados , Cisteamina/metabolismo , Glutationa S-Transferase pi/genética , Fármacos Neuroprotetores/farmacologia , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
14.
Mol Immunol ; 63(2): 355-66, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25239864

RESUMO

Reactive oxygen species (ROS) accumulation induces oxidative stress and cell damage, which then activates several signaling pathways and triggers inflammatory response. Biliverdin is a natural product of heme metabolism which is converted to bilirubin by the enzyme biliverdin reductase A (BLVRA) which also plays a role in antioxidant activity via the ROS scavenging activity of bilirubin. In this study, we examined the anti-inflammatory and anti-apoptotic effects of Tat-BLVRA protein on lipopolysaccharide (LPS)-induced inflammation in Raw 264.7 macrophage cells. Transduction of Tat-BLVRA protein into Raw 264.7 cells and mice ear tissue was tested by Western blot analysis and immunohistochemical analysis. Tat-BLVRA protein was effective in inhibiting mitogen activated protein kinases (MAPKs), Akt and NF-κB activation, intracellular ROS production and DNA fragmentation. Also, Tat-BLVRA protein significantly inhibited the expression of cytokines, COX-2, and iNOS. In a 12-O-tetradecanoylphobol 13-acetate (TPA)-induced mouse model, mice ears treated with Tat-BLVRA protein showed decreased ear thickness and weight, as well as inhibited MAPKs activation and cytokine expression. Thus we suggested that Tat-BLVRA protein may provide an effective therapeutic agent for inflammatory skin diseases.


Assuntos
Edema/terapia , Inflamação/patologia , Macrófagos/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/uso terapêutico , Produtos do Gene tat do Vírus da Imunodeficiência Humana/uso terapêutico , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Edema/patologia , Humanos , Inflamação/enzimologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Masculino , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Transdução de Sinais , Acetato de Tetradecanoilforbol , Transdução Genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...