Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(49): 20605-20614, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38038997

RESUMO

Methane (CH4) is the second most important greenhouse gas, 27 times as potent as CO2 and responsible for >30% of the current anthropogenic warming. Globally, more than half of CH4 is produced microbially through methanogenesis. Pyrogenic black carbon possesses a considerable electron storage capacity (ESC) and can be an electron donor or acceptor for abiotic and microbial redox transformation. Using wood-derived biochar as a model black carbon, we demonstrated that air-oxidized black carbon served as an electron acceptor to support anaerobic oxidation of organic substrates, thereby suppressing CH4 production. Black carbon-respiring bacteria were immediately active and outcompeted methanogens. Significant CH4 did not form until the bioavailable electron-accepting capacity of the biochar was exhausted. An experiment with labeled acetate (13CH3COO-) yielded 1:1 13CH4 and 12CO2 without biochar and predominantly 13CO2 with biochar, indicating that biochar enabled anaerobic acetate oxidation at the expense of methanogenesis. Methanogens were enriched following acetate fermentation but only in the absence of biochar. The electron balance shows that approximately half (∼2.4 mmol/g) of biochar's ESC was utilized by the culture, corresponding to the portion of the ESC > +0.173 V (vs SHE). These results provide a mechanistic basis for quantifying the climate impact of black carbon and developing ESC-based applications to reduce CH4 emissions from biogenic sources.


Assuntos
Dióxido de Carbono , Elétrons , Carvão Vegetal , Oxidantes , Metano , Acetatos , Solo
2.
Water Environ Res ; 92(10): 1833-1860, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32866315

RESUMO

A review of the literature published in 2019 on topics related to hazardous waste management in water, soils, sediments, and air. The review covered treatment technologies applying physical, chemical, and biological principles for the remediation of contaminated water, soils, sediments, and air. PRACTICAL POINTS: This report provides a review of technologies for the management of waters, wastewaters, air, sediments, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) in three scientific areas of physical, chemical, and biological methods. Physical methods for the management of hazardous wastes including general adsorption, sand filtration, coagulation/flocculation, electrodialysis, electrokinetics, electro-sorption ( capacitive deionization, CDI), membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, potassium permanganate processes, and Fenton and Fenton-like process were reviewed. Biological methods such as aerobic, anoxic, anaerobic, bioreactors, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed. Case histories were reviewed in four areas including contaminated sediments, contaminated soils, mixed industrial solid wastes and radioactive wastes.


Assuntos
Resíduos Perigosos , Metais Pesados , Biodegradação Ambiental , Compostos Orgânicos , Águas Residuárias
3.
Sci Total Environ ; 693: 133605, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31634998

RESUMO

Commercial activated carbon was treated with six quaternary ammonium salts (Quats), namely, hexyltrimethylammonium (HTMA), octyltrimethylammonium (OTMA), decyltrimethylammonium (DCTMA), dodecyltrimethylammonium (DDTMA), Tetradecyltrimethylammonium (TDTMA), and hexadecyltrimethylammoium (HDTMA) as to enhance the fluoride adsorption capacity. In batch mode experiments, fluoride adsorption onto the Quats-treated activated carbon decreased dramatically with increase in solution pH. Fluoride removal by the Quats-treated activated carbons was closely related to the Quats chain length at less-than critical micelle concentration (CMC). Multi-site adsorption isotherm described fluoride adsorption characteristics well. Results showed that activated carbon treated with DDTMA exhibited the best fluoride adsorption density among all Quats investigated. DDTMA-treated activated carbons exhibited two-fold increase in the fluoride adsorption capacity compared to the untreated activated carbon. Results of regeneration, by alkaline desorption and/or Quats re-loading, showed fluoride-laden activated carbons have high reusability. DDTMA increased the positive surface charge of the activated carbon that enhanced fluoride adsorption. DDTMA-treated activated carbon was promising for fluoride removal from water with much enhanced removal capacity.

4.
Water Environ Res ; 91(10): 1177-1198, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31433896

RESUMO

This is a review of the literature published in 2018 on topics related to hazardous waste management in water, soils, sediments, and air. The review covers treatment technologies applying physical, chemical, and biological principles for contaminated water, soils, sediments, and air. PRACTITIONER POINTS: The management of waters, wastewaters, and soils contaminated by various hazardous chemicals including inorganic (e.g., oxyanions, salts, and heavy metals), organic (e.g., halogenated, pharmaceuticals and personal care products, pesticides, and persistent organic chemicals) was reviewed according to the technology applied, namely, physical, chemical and biological methods. Physical methods for the management of hazardous wastes including adsorption, coagulation (conventional and electrochemical), sand filtration, electrosorption (or CDI), electrodialysis, electrokinetics, membrane (RO, NF, MF), photocatalysis, photoelectrochemical oxidation, sonochemical, non-thermal plasma, supercritical fluid, electrochemical oxidation, and electrochemical reduction processes were reviewed. Chemical methods including ozone-based, hydrogen peroxide-based, persulfate-based, Fenton and Fenton-like, and potassium permanganate processes for the management of hazardous were reviewed. Biological methods such as aerobic, anaerobic, bioreactor, constructed wetlands, soil bioremediation and biofilter processes for the management of hazardous wastes, in mode of consortium and pure culture were reviewed.


Assuntos
Resíduos Perigosos , Ozônio , Biodegradação Ambiental , Compostos Orgânicos , Águas Residuárias
5.
Water Environ Res ; 90(10): 1679-1719, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30126499

RESUMO

A review of the literature published in 2017 on topics relating to hazardous waste management in water, soils and air. This review covers hazardous waste treatment theologies and applying physical, chemical, and biological principles.


Assuntos
Resíduos Perigosos , Gerenciamento de Resíduos/métodos
6.
Water Environ Res ; 89(10): 1461-1486, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28954671

RESUMO

This article reviews the scientific literature published in 2016 on physical, chemical, and biological treatment of hazardous contaminants and environmental bioremediation.


Assuntos
Resíduos Perigosos , Gerenciamento de Resíduos/métodos , Biodegradação Ambiental
7.
Int J Environ Res Public Health ; 9(10): 3711-23, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23202769

RESUMO

Arsenic (As) contamination in groundwater is a great environmental health concern and is often the result of contact between groundwater and arsenic-containing rocks or sediments and from variation of pH and redox potentials in the subsurface. In the past decade, magnetite nanoparticles (MNPs) have been shown to have high adsorption activity towards As. Alerted by the reported cytotoxicity of 5­12 nm MNP, we studied the adsorption behavior of 1.15 nm MNP and a MNP composite (MNPC), MNPs interlinked by silane coupling agents. With an initial concentration of As at 25 mg L(-1), MNPs exhibited high adsorption capacity for As(V) and As (III), 206.9 mg·g(-1) and 168.6 mg·g(-1) under anaerobic conditions, respectively, and 109.9 mg·g(-1) and 108.6 mg·g(-1) under aerobic conditions, respectively. Under aerobic conditions, MNPC achieved even higher adsorption capacity than MNP, 165.1 mg·g(-1) on As(V) and 157.9 mg·mg(-1) on As(III). For As(V) at 50 mg L(-1), MNPC achieved an adsorption capacity as high as 341.8 mg·g(-1), the highest in the literature. A kinetic study indicated that this adsorption reaction can reach equilibrium within 15 min and the rate constant of As(V) is about 1.9 times higher than that of As(III). These results suggested that MNPC can serve as a highly effective adsorbent for fast removal of As.


Assuntos
Arsênio/química , Nanopartículas de Magnetita/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Cinética , Silanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...