Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116716, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735084

RESUMO

Biofilms often engender persistent infections, heightened antibiotic resistance, and the recurrence of infections. Therefor, infections related to bacterial biofilms are often chronic and pose challenges in terms of treatment. The main transcription regulatory factor, CsgD, activates csgABC-encoded curli to participate in the composition of extracellular matrix, which is an important skeleton for biofilm development in enterobacteriaceae. In our previous study, a wide range of natural bioactive compounds that exhibit strong affinity to CsgD were screened and identified via molecular docking. Tannic acid (TA) was subsequently chosen, based on its potent biofilm inhibition effect as observed in crystal violet staining. Therefore, the aim of this study was to investigate the specific effects of TA on the biofilm formation of clinically isolated Escherichia coli (E. coli). Results demonstrated a significant inhibition of E. coli Ec032 biofilm formation by TA, while not substantially affecting the biofilm of the ΔcsgD strain. Moreover, deletion of the csgD gene led to a reduction in Ec032 biofilm formation, alongside diminished bacterial motility and curli synthesis inhibition. Transcriptomic analysis and RT-qPCR revealed that TA repressed genes associated with the csg operon and other biofilm-related genes. In conclusion, our results suggest that CsgD is one of the key targets for TA to inhibit E. coli biofilm formation. This work preliminarily elucidates the molecular mechanisms of TA inhibiting E. coli biofilm formation, which could provide a lead structure for the development of future antibiofilm drugs.


Assuntos
Biofilmes , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Taninos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Taninos/farmacologia , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Antibacterianos/farmacologia , Transativadores
2.
Front Vet Sci ; 11: 1361552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496310

RESUMO

The aim of this study was to investigate the anti-Eimeria tenella mechanism of Qingchang Compound (QCC) and provide a basis for its clinical application. The active ingredients, active ingredient-disease intersection targets, and possible pathways of QCC for the treatment of chicken coccidiosis were analyzed, the binding ability of pharmacodynamic components and target proteins was determined by network pharmacology and the molecular docking, and a model of infection with coccidiosis was constructed to verify and analyze the mechanism of action of QCC against coccidiosis. Among the 57 components that met the screening conditions, the main bioactive components were quercetin, dichroine, and artemisinin, with IL-1ß, IL-6, IL-10, IFN-γ, and IL-8 as the core targets. Simultaneously, the KEGG signaling pathway of QCC anti-coccidiosis in chickens was enriched, including cytokine-cytokine receptor interactions. The results showed that the main pharmacodynamic components of QCC and the core targets could bind well; artemisinin and alpine possessed the largest negative binding energies and presented the most stable binding states. In addition, in vivo studies showed that QCC reduced blood stool in chickens with coccidiosis, restored cecal injury, and significantly reduced the mRNA and protein expression levels of IL-1ß, IL-10, and IFN-γ in ceca (p < 0.01). Our results suggest that the main active ingredients of QCC are artemisinin and alpine and its mechanism of action against coccidiosis may be related to the reduction of the inflammatory response by acting on specific cytokines.

3.
Arch Pharm (Weinheim) ; 357(4): e2300540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217306

RESUMO

A series of new febrifugine derivatives with a 4(3H)-quinazolinone scaffold were synthesized and evaluated for their anticoccidial activity both in vitro and in vivo. The targets' in vitro activity against Eimeria tenella was studied using quantitative real-time reverse transcription polymerase chain reaction and Madin-Darby bovine kidney cells. Most of these compounds demonstrated anticoccidial efficacy, with inhibition ratios ranging from 3.3% to 85.7%. Specifically, compounds 33 and 34 showed significant inhibitory effects on the proliferation of E. tenella and exhibited lower cytotoxicity compared to febrifugine. The IC50 values of compounds 33 and 34 were 3.48 and 1.79 µM, respectively, while the CC50 values were >100 µM for both compounds. Furthermore, in a study involving 14-day-old chickens infected with 5 × 104 sporulated oocysts, treatment with five selected compounds (22, 24, 28, 33, and 34), which exhibited in vitro inhibition rate of over 50% at 100 µM, at a dose of 40 mg/kg in daily feed for 8 consecutive days showed that compound 34 possessed moderate in vivo activity against coccidiosis, with an anticoccidial index of 164. Structure-activity relationship studies suggested that spirocyclic piperidine may be a preferable substructure to maintain high effectiveness in inhibiting Eimeria spp., when the side chain 1-(3-hydroxypiperidin-2-yl)propan-2-one was replaced.


Assuntos
Coccidiose , Coccidiostáticos , Doenças das Aves Domésticas , Quinazolinas , Animais , Bovinos , Coccidiostáticos/farmacologia , Coccidiostáticos/química , Coccidiostáticos/uso terapêutico , Galinhas , Relação Estrutura-Atividade , Coccidiose/tratamento farmacológico , Coccidiose/veterinária , Piperidinas/farmacologia , Doenças das Aves Domésticas/tratamento farmacológico
4.
Front Cell Infect Microbiol ; 13: 1295311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162583

RESUMO

Biofilm is a structured community of bacteria encased within a self-produced extracellular matrix. When bacteria form biofilms, they undergo a phenotypic shift that enhances their resistance to antimicrobial agents. Consequently, inducing the transition of biofilm bacteria to the planktonic state may offer a viable approach for addressing infections associated with biofilms. Our previous study has shown that the mouse antimicrobial peptide CRAMP-34 can disperse Pseudomonas aeruginosa (P. aeruginosa) biofilm, and the potential mechanism of CRAMP-34 eradicate P. aeruginosa biofilms was also investigated by combined omics. However, changes in bacterial extracellular metabolism have not been identified. To further explore the mechanism by which CRAMP-34 disperses biofilm, this study analyzed its effects on the extracellular metabolites of biofilm cells via metabolomics. The results demonstrated that a total of 258 significantly different metabolites were detected in the untargeted metabolomics, of which 73 were downregulated and 185 were upregulated. Pathway enrichment analysis of differential metabolites revealed that metabolic pathways are mainly related to the biosynthesis and metabolism of amino acids, and it also suggested that CRAMP-34 may alter the sensitivity of biofilm bacteria to antibiotics. Subsequently, it was confirmed that the combination of CRAMP-34 with vancomycin and colistin had a synergistic effect on dispersed cells. These results, along with our previous findings, suggest that CRAMP-34 may promote the transition of PAO1 bacteria from the biofilm state to the planktonic state by upregulating the extracellular glutamate and succinate metabolism and eventually leading to the dispersal of biofilm. In addition, increased extracellular metabolites of myoinositol, palmitic acid and oleic acid may enhance the susceptibility of the dispersed bacteria to the antibiotics colistin and vancomycin. CRAMP-34 also delayed the development of bacterial resistance to colistin and ciprofloxacin. These results suggest the promising development of CRAMP-34 in combination with antibiotics as a potential candidate to provide a novel therapeutic approach for the prevention and treatment of biofilm-associated infections.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Camundongos , Vancomicina , Colistina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana
5.
BMC Vet Res ; 18(1): 281, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842628

RESUMO

BACKGROUND: Paratuberculosis is a widespread chronic infection of Mycobacterium avium subspecies paratuberculosis (MAP) that causes significant economic losses to the sheep industry. The current study investigated this disease, which causes diarrhea in sheep, particularly, in Bayannaoer, Inner Mongolia, China. Diagnosis was based on clinical symptoms, pathological autopsy, histopathological inspection, and serological and molecular methods. RESULTS: MAP was confirmed using polymerase chain reaction using DNA extracted from tissue and fecal samples. Serum samples from 472 individual sheep were obtained to detect antibodies against MAP using an enzyme-linked immunosorbent assay. MAP antibodies were separately detected in 17.86% (35/196) and 18.48% (51/276) of sheep herds at approximately 6 months and ≥ 1 year of age, respectively. The tissue lesion and pathological section results were consistent with paratuberculosis infection. CONCLUSIONS: To our knowledge, this is the first report of Mycobacterium avium subspecies paratuberculosis seroprevalence in Bayannaoer sheep in Inner Mongolia. Our findings show that MAP is not only prevalent, but also a potential threat to this region. Further investigations, including long-term epidemiological surveillance and isolation are needed for the awareness and effective treatment of paratuberculosis in sheep of Inner Mongolia.


Assuntos
Mycobacterium avium subsp. paratuberculosis , Paratuberculose , Doenças dos Ovinos , Animais , China/epidemiologia , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/veterinária , Fazendas , Fezes/microbiologia , Paratuberculose/diagnóstico , Estudos Soroepidemiológicos , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/microbiologia
6.
Transbound Emerg Dis ; 69(4): 1794-1803, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34008327

RESUMO

Avian influenza (AI) is an important zoonotic disease, which can be transmitted across species barriers to other hosts, especially humans, posing a serious threat to the poultry industry and public health. In recent years, human cases infected with the H10N8, H9N2, and H7N9 of avian influenza viruses (AIVs) have been identified frequently as have the internal genes of H7N9 and H10N8, which are derived from H9N2 viruses. The adaptive mutation of the PB2 gene is an important way for the H10N8, H9N2, and H7N9 AIVs to spread across species to adapt to new hosts. Several well-known adaptive mutations in the PB2 gene, such as E627K, D701N, and A588V, significantly enhanced the virulence of the AIVs in mammals. However, the co-adaptation of AIVs to avian and mammalian hosts is rarely studied. In this study, we found that the mutations of PB2-I292V, PB2-R389K, PB2-A588V, PB2-T598M/V, PB2-L648V, and PB2-T676M substitutions significantly increased after 2012. In addition, in our previous studies, we found that the human-origin and avian-origin of H10N8 AIVs with very high homology also have these six mutation differences in PB2 gene, and the avian-origin H10N8 strain known as JX102 with all the key amino acids on the PB2 protein in the pre-evolutionary stage, so JX102 was chosen as a model strain. Among them, PB2-A588V significantly enhanced the activity of polymerase in avian and mammalian cells. Notably, animal experiments showed that PB2-A588V substitution increased the pathogenicity and transmissibility in chickens and the virulence of mice. The combined mutations of PB2-F6 (including PB2-I292V, PB2-R389K, PB2-A588V, PB2-T598M, PB2-L648V, and PB2-T676M) obtained higher adaptability of AIVs in avians and mammals than that of the single mutation of PB2-A588V, which suggested that the PB2 588 site is a key co-adaptation site and that synergies with other mutation sites can further enhance this co-adaptability. The results of this study show that the emergence of co-adaptation not only increases the threat to avians and mammals but may also contribute to a pandemic among avians and cross the interspecies barrier to mammals.


Assuntos
Vírus da Influenza A Subtipo H10N8 , Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Doenças dos Roedores , Animais , Galinhas , Humanos , Vírus da Influenza A Subtipo H10N8/metabolismo , Vírus da Influenza A Subtipo H9N2/genética , Mamíferos , Camundongos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência/genética
7.
Vet Microbiol ; 254: 108985, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33550110

RESUMO

The genome of influenza A virus is negative-sense and segmented RNA, which is transcribed and replicated by the viral RNA-dependent RNA polymerase (RdRp) during the virus life cycle. The viral RdRp is thought to be an important host range and virulence determinant factor, and the 627 site of PB2 subunit is a highly acceptable key site of RdRp function. Besides, the function of RdRp is modulated by several host factors. Identification of the host factors interacting with RdRp is of great interest. Here, we tried to explore an effective method to study virus-host interaction by rescuing replication-competent recombinant influenza viruses carrying Strep tagged PB2. Subsequently, we tested several biological characteristics of recombinant viruses in cells and pathogenicity in mice. Then, we purified of protein complex of Strep tagged PB2 and host factors of interest from 293 T cells infected with recombinant viruses. After purification, we performed mass spectrometry to identify these proteins that interacting with PB2. We identified 57 host factors in total. Through Gene Ontology (GO) and Protein-Protein interaction (PPI) network analysis, we revealed the function and network of these proteins. In summary, we generated replication-competent recombinant influenza viruses by inserting a Strep-Tag into PB2 and purified host factors interacting with viral RdRp bearing a 627 K or 627E PB2. These proteins might function as host range and virulence determinants of influenza virus.


Assuntos
Interações Hospedeiro-Patógeno/genética , Vírus da Influenza A/genética , Proteínas Virais/genética , Animais , Cães , Feminino , Genoma Viral , Células HEK293 , Humanos , Vírus da Influenza A/patogenicidade , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , RNA Viral , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Recombinação Genética , Genética Reversa , Sitios de Sequências Rotuladas , Organismos Livres de Patógenos Específicos , Replicação Viral
8.
Front Microbiol ; 10: 1625, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379779

RESUMO

The influenza A virus replicates in a broad range of avian and mammalian species by hijacking cellular factors and processes. Avian influenza A viruses (AIVs) generally propagated poorly in mammalian cells, but some mutants of virus-encoded RNA polymerase components, especially PB2 subunit, can overcome host restriction. Host factors associated with PB2 may be essential for efficient AIV replication in mammalian cells. Here, we infected human cells with the PB2 Flag-tagged replication-competent recombinant AIV and identified cellular proteins that coprecipitate with PB2 protein by mass spectrometry. We confirmed one of the coprecipitating host factors, DEAD-box protein eIF4A3, that interacts with viral PB2, PB1, and NP proteins. Depletion of endogenous eIF4A3 significantly reduced virus replication. Later studies showed that eIF4A3 is essential for viral RNA polymerase activity and viral RNAs synthesis. Upon systematic dissection of the influenza virus progeny mRNA generation, from pre-mRNA processing to nuclear export, we found that the depletion of eIF4A3 resulted in significant defects in the ratio of M2 to M1 and NS2 to NS1, and the proportion of viral spliced mRNA in the nucleus increased, indicating that eIF4A3 plays a significant function in viral nascent intron mRNA splicing and spliced mRNA (M2 and NS2) nuclear export. Additionally, we confirmed that in specific deletion of eIF4A3, the synthesis of reduced NS2 can significantly impair neo-synthetized viral ribonucleoprotein (vRNP) nuclear export. Taken together, our findings revealed that eIF4A3 is a key mediator of AIV polymerase activity, mRNA splicing, and spliced mRNA nuclear export.

10.
Front Microbiol ; 8: 1084, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659898

RESUMO

The H5 subtype virus of Highly Pathogenic Avian Influenza Virus has caused huge economic losses to the poultry industry and is a threat to human health. Until 2010, H5N1 subtype virus was the major genotype in China. Since 2011, reassortant H5N2, H5N6, and H5N8 viruses were identified in domestic poultry in China. The clade 2.3.4.4 H5N6 and H5N8 AIV has now spread to most of China. Clade 2.3.4.4 H5N6 virus has caused 17 human deaths. However, the prevalence, pathogenicity, and transmissibility of the distinct NA reassortment with H5 subtypes viruses (H5Nx) is unknown. We constructed five clade 2.3.4.4 reassortant H5Nx viruses that shared the same HA and six internal gene segments. The NA gene segment was replaced with N1, N2, N6, ΔN6 (with an 11 amino acid deletion at the 58th to 68th of NA stalk region), and N8 strains, respectively. The reassortant viruses with distinct NAs of clade 2.3.4.4 H5 subtype had different degrees of fitness. All reassortant H5Nx viruses formed plaques on MDCK cell monolayers, but the ΔH5N6 grew more efficiently in mammalian and avian cells. The reassortant H5Nx viruses were more virulent in mice as compared to the H5N2 virus. The H5N6 and H5N8 reassortant viruses exhibited enhanced pathogenicity and transmissibility in chickens as compared to the H5N1 reassortant virus. We suggest that comprehensive surveillance work should be undertaken to monitor the H5Nx viruses.

11.
Sci Rep ; 6: 19474, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26782141

RESUMO

Human infections with avian influenza H7N9 or H10N8 viruses have been reported in China, raising concerns that they might cause human epidemics and pandemics. However, how these viruses adapt to mammalian hosts is unclear. Here we show that besides the commonly recognized viral polymerase subunit PB2 residue 627 K, other residues including 87E, 292 V, 340 K, 588 V, 648 V, and 676 M in PB2 also play critical roles in mammalian adaptation of the H10N8 virus. The avian-origin H10N8, H7N9, and H9N2 viruses harboring PB2-588 V exhibited higher polymerase activity, more efficient replication in mammalian and avian cells, and higher virulence in mice when compared to viruses with PB2-588 A. Analyses of available PB2 sequences showed that the proportion of avian H9N2 or human H7N9 influenza isolates bearing PB2-588 V has increased significantly since 2013. Taken together, our results suggest that the substitution PB2-A588V may be a new strategy for an avian influenza virus to adapt mammalian hosts.


Assuntos
Adaptação Fisiológica/fisiologia , Vírus da Influenza A Subtipo H10N8/patogenicidade , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Vírus da Influenza A Subtipo H9N2/patogenicidade , Mamíferos/virologia , Substituição de Aminoácidos/genética , Animais , Aves , Galinhas , China , Cães , Feminino , Células HEK293 , Humanos , Influenza Aviária/virologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética , Virulência/genética , Replicação Viral/genética
12.
Microb Pathog ; 74: 33-7, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25078003

RESUMO

In Haemophilus parasuis, the lipooligosaccharide (LOS) has been identified as an important virulence factor. The rfa gene cluster encodes enzymes for LOS core biosynthesis. In order to investigate the role of the rfaE gene, we generated an rfaE deficient mutant (ΔrfaE) of a H. parasuis SC096 by a natural transformation method. The purified preparation of LOS from the ΔrfaE mutant strain showed truncated LOS structure on silver-stained SDS-PAGE. Compared to the wild-type SC096 strain, the generation time of ΔrfaE mutant strain was significantly extended from 59 min to 69 min. The ΔrfaE mutant strain caused an approximately 30-fold reductions in survival rate in 50% sera and 36-fold reductions in survival rate in 90% sera, respectively (p < 0.001). In adhesion and invasion assays, the ΔrfaE mutant strain had 10-fold less efficient adherence and 12-fold reductions in invasion of the porcine umbilicus vein endothelial cells (PUVEC) and porcine kidney epithelial cells (PK-15), respectively (p < 0.001). However, the complemented strain could restore the above phenotypes. Hence, the above results suggested that the rfaE gene participated in the pathogenicity of H. parasuis SC096 strain.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Atividade Bactericida do Sangue , Deleção de Genes , Glicosiltransferases/metabolismo , Haemophilus parasuis/fisiologia , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Células Cultivadas , Farmacorresistência Bacteriana , Eletroforese em Gel de Poliacrilamida , Células Endoteliais/microbiologia , Teste de Complementação Genética , Glicosiltransferases/genética , Haemophilus parasuis/genética , Haemophilus parasuis/crescimento & desenvolvimento , Haemophilus parasuis/imunologia , Lipopolissacarídeos/química , Lipopolissacarídeos/isolamento & purificação , Lipopolissacarídeos/metabolismo , Viabilidade Microbiana , Suínos , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...