Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Nano ; 18(12): 8961-8970, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38470346

RESUMO

Valley excitons dominate the optoelectronic response of transition-metal dichalcogenides and are drastically affected by structural and environmental inhomogeneities localized in these materials. Critical to understanding and controlling these nanoscale excitonic changes is the ability to correlate the imaging of excitonic states with crystalline structures on the atomic scale. Here, we apply scanning tunneling microscope-induced luminescence microscopy to image valley excitons in a semiconducting transition-metal dichalcogenide monolayer decoupled by a 10 nanometer-thick hexagonal-boron-nitride flake incorporated in a lateral homojunction on an Au electrode surface. This design enables the observation of chiral excitonic emission arising from neutral and charged valley excitons of the monolayer semiconductor at ambipolar voltages with a quantum efficiency up to ∼10-5 photon/electron. The measured light helicity demonstrates considerable circular polarization dependent on the sample voltage, reaching as much as 40%. The real-space luminescence imaging maps─at subnanometer resolution─of the valley excitons reveal striking spatial variations associated with localized inhomogeneities, including surface impurities and possibly nanoscale dielectric and/or potential disorders in the monolayer. Our study introduces a promising format for 2D materials to explore and tailor their optoelectronic processes at the atomic scale.

3.
J Phys Chem A ; 127(43): 9013-9021, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37875015

RESUMO

Intramolecular hydrogen bonds (H-bonds) are abundant in physicochemical and biological processes. The strength of such interaction is governed by a subtle balance between conformational flexibility and steric effect that are often hard to predict. Herein, using linear aminoalcohols NH2(CH2)nOH (n = 2-5) as a model system, we demonstrated the dependence of intramolecular H-bond on the backbone chain length. With sensitive photoacoustic Raman spectroscopy (PARS), the gas-phase Raman spectra of aminoalcohols were measured in both N-H and O-H stretching regions at 298 and 338 K and explained with the aid of quantum chemistry calculations. For n = 2-4, two conformers corresponding to the O-H···N intramolecular H-bond and free OH were identified, whereas for n = 5, only the free-OH conformer was identified. Compared to free OH, a striking spectral dependence was observed for the intramolecular H-bonded conformer. According to the red shift of the OH-bonded band, the strongest intramolecular H-bond yields in n = 4, but the favorable chain length to form an intramolecular hydrogen bond at room temperature was observed in n = 3, which corresponds to a six-membered-ring in 3-aminopropanol. This is in good agreement with statistical analysis from the Cambridge Structural Database (CSD) that the intramolecular hydrogen bond is preferred when the six-membered ring is formed. Furthermore, combined with the calculated thermodynamic data at the MP2/aug-cc-pVTZ//M062X/6-311++G(d,p) level, the origin of decrease in intramolecular hydrogen-bond formation was ascribed to an unfavorable negative entropy contribution when the backbone chain is further getting longer, which results in the calculated Gibbs free energy optimum changing with increasing temperature from n = 4 (0-200 K) to n = 3 (200-400 K) and to n = 2 (above 400 K). These results will provide new insight into the nature of intramolecular hydrogen bonds at the molecular level and the application of intramolecular hydrogen bonds in rational drug design and supramolecular assembly.

4.
J Chem Phys ; 157(20): 204201, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36456225

RESUMO

As one of the popular coherent Raman scattering techniques, stimulated Raman scattering (SRS) has made significant progress in recent years, especially in label-free biological imaging. Polarization provides an additional degree of freedom to manipulate the SRS process. In previous studies, only linearly polarized SRS was fully investigated, in which both pump and Stokes laser fields are linearly polarized. Here, we theoretically analyzed the SRS process excited by two circularly polarized laser fields and then experimentally demonstrated it by taking a spherical symmetric CH4 molecule as a model system. The experimental results are in good agreement with the theoretical ones. It is shown that circularly polarized SRS (CP-SRS) has unique characteristics different from linear polarization. When the handedness of circular polarization states of two laser fields is the same, CP-SRS further suppresses the depolarized vibrational band while keeping the polarized band almost unaffected. On the other hand, when the handedness is opposite, CP-SRS enhances the depolarized band while suppressing the polarized band. Therefore, the CP-SRS not only allows us to resolve the symmetry of vibrational modes but also can enhance vibrational contrast based on symmetry selectivity by suppressing or enhancing the signal from a specific vibrational mode. These results will have potential applications in improving chemical selectivity and imaging contrast as well as spectral resolution SRS microscopy. In addition, the CP-SRS has the ability to determine the depolarization ratio ρ and identify the overlapping Raman bands.


Assuntos
Análise Espectral Raman , Vibração , Microscopia , Modelos Biológicos
5.
Phys Chem Chem Phys ; 23(30): 15994-16004, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34318831

RESUMO

The nonlinear Fano effects on the absorption of hybrid systems composed of a silver nanosphere and an indoline dye molecule have been systematically investigated by the hybrid approach, which combines the quantum mechanics method (QM) with the computational electromagnetic method (EM). The absorption spectra of the dye molecule in the proximity of an Ag nanoparticle have been calculated by changing the incident field intensity, the phenomenological dephasing of molecular excitation, and the enhancement ratio of the near field. The contribution of molecular nonlinear response properties and the quantum interferences of the incident and scattered fields and of resonant plasmon-molecular excitations to the spectra has been identified. It is in no doubt that Fano resonance due to the plasmon-molecular interaction can appear in both the weak and strong field regimes; however, the Fano effect is more pronounced in the strong field regime where quantum interference leads to a nonlinear Fano effect controlled by a complex field-dependent Fano factor. When the incident field is strong enough, the resonance antisymmetry structure is spectrally resolved, and it changes with the change of the field intensity. As the field intensity varies from weak to strong, the Fano lineshape's asymmetry increases with increasing intensity in the beginning, and then decreases with a further increase of the field intensity attributed to the increase of the detuning energy induced by the integrated energy shift upon field dressing during the excitation. Decreasing the enhancement ratio of the near field or the dephasing of molecular excitation can also control the spectral lineshape transformation from an asymmetric profile to a symmetric Lorentzian lineshape. These findings are consistent with previous experimental and theoretical observations arisen by quantum interferences and are expected to stimulate further work toward exploring the plasmon-molecular interplay and the applications of Fano resonance in optical switching and sensing.

6.
J Chem Phys ; 153(2): 024301, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668910

RESUMO

Vibrationally resolved photoemission spectra of the electronic-state transitions C3Πu → B3Πg of N2 and b3Σ+ → a3Π of CO following low-energy electron impacts are measured with a crossed-beam experimental arrangement. The absolute cross sections of C3Πu (ν') → B3Πg (ν″) of N2 are presented for the vibrational state-to-state transitions (ν',ν″) = (0,0), (0,1), (1,0), (1,2), and (2,1). The excitation cross sections of the metastable state C3Πu of N2 show the maxima at the electron-impact energies 14.10 (ν' = 0) eV and 14.50 (ν' = 1) eV, which are potentially related to the core-excited vibrational Feshbach resonant state 2Σu + of N2 - formed by electron attachment. The absolute cross sections of b3Σ+ (ν' = 0) → a3Π (ν″ = 0, 1, 2, 3, 4) of CO are given by the calibrations with those of N2 measured in this work. Besides the maximum excitation cross section 5.85 × 10-18 cm2 at 10.74 eV of the CO b3Σ+ (ν' = 0) state, some fine structures on the excitation function profile are attributed to different shapes and Feshbach resonant states of CO- formed by electron attachment, while the others arise from the direct electron-impact excitation. Some discrepancies, particularly for N2, between the present data and the results available in the literature studies arise from different experimental techniques and data-processing procedures. Furthermore, contributions of physical processes such as wave-packet evolution and non-Franck-Condon dynamics are highlighted here.

7.
J Chem Phys ; 152(22): 224708, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32534528

RESUMO

The nonlinear optical properties of hybrid systems composed of a silver nanosphere and an open-ended finite-sized armchair single-walled carbon nanotube (SWCNT) are systematically investigated by the hybrid time-dependent Hartree-Fock (TDHF)/finite difference time domain (FDTD) approach, which combines the real-time TDHF approach for the molecular electronic dynamics with the classical computational electrodynamics approach, the FDTD, for solving Maxwell's equations. The high order harmonic generation (HHG) spectra of SWCNTs are studied as a function of the intensity (I0) and frequency (ω0) of the incident field, and SWCNTs length as well. It is found that the near field generated by a Ag nanoparticle has an overall enhancement to the molecular HHG in all the energy range, and it extends the HHG spectra to high energy. The inhomogeneity of the near field results in the appearance of even-order harmonics, and their corresponding spectral intensities are sensitive to ω0, therefore the near field's gradient. When ω0 is far away from the frequency of plasmon resonance of the silver nanosphere (ωc), the interference between the incident and scattering light beams extends the spectral range and makes the HHG spectra more sensitive to I0, while at ω0 = ωc, the impact of the interference on the spectra is negligible.

8.
J Phys Chem B ; 123(38): 8057-8064, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31478670

RESUMO

Amyloid fibrillation is closely associated with a series of neurodegenerative diseases. According to that, the intermediate soluble oligomers and protofibrils are more toxic; reducing their concentrations in protein solutions by accelerating fibrillation is believed as a feasible strategy for treatment or remission of the diseases. Using hen egg-white lysozyme (HEWL) as a model protein, the promotion effect of succinimide was revealed by a series of experiments, e.g., atomic force microscopy (AFM), thioflavin T (ThT) fluorescence assay, Far-UV circular dichroism (CD) and Raman spectroscopy, and modeling the effect of succinimide-like derivative intermediates of intramolecular deamidation of the backbone during amyloid fibrillation. The AFM measurement confirmed that succinimide effectively accelerated the morphological changes of HEWL, while at the molecular level, the accelerative transformation of protein secondary structures was also clarified by ThT fluorescence assay and Far-UV CD spectroscopy. The incubation time-dependent Raman spectroscopy further revealed that the direct transformation from α-helices to organized ß-sheets occurred upon skipping the intermediate random coils under the action of succinimide. This "bridge" effect of succinimide was attributed to its special influence on disulfide bonds. In the presence of succinimide in protein solutions, the native disulfide bonds of lysozyme could be broken more efficiently and quickly within hydrolysis, resulting in exposure of the buried hydrophobic residues and accelerating the formation of cross ß-sheet structures. The present investigation provides very useful information for understanding the effect of intramolecular deamidation on the whole amyloid fibrillation.


Assuntos
Amiloide/metabolismo , Muramidase/metabolismo , Succinimidas/química , Amiloide/química , Animais , Galinhas , Dicroísmo Circular , Microscopia de Força Atômica , Muramidase/química , Conformação Proteica em Folha beta , Succinimidas/metabolismo
9.
Sensors (Basel) ; 18(7)2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29958405

RESUMO

Vibrational spectroscopy is a powerful tool for probing molecular structures and dynamics since it offers a unique fingerprint that allows molecular identification. One of important aspects of applying vibrational spectroscopy is to develop the probes that can characterize the related properties of molecules such as the conformation and intermolecular interaction. Many examples of vibrational probes have appeared in the literature, including the azide group (⁻N3), amide group (⁻CONH2), nitrile groups (⁻CN), hydroxyl group (⁻OH), ⁻CH group and so on. Among these probes, the ⁻CH group is an excellent one since it is ubiquitous in organic and biological molecules and the C⁻H stretching vibrational spectrum is extraordinarily sensitive to the local molecular environment. However, one challenge encountered in the application of C⁻H probes arises from the difficulty in the accurate assignment due to spectral congestion in the C⁻H stretching region. In this paper, recent advances in the complete assignment of C⁻H stretching spectra of aliphatic alcohols and the utility of C⁻H vibration as a probe of the conformation and weak intermolecular interaction are outlined. These results fully demonstrated the potential of the ⁻CH chemical group as a molecular probe.

10.
J Phys Chem B ; 121(34): 8179-8187, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28793189

RESUMO

A combination of temperature-dependent Raman spectroscopy and quantum chemistry calculation was employed to investigate the blue shift of CH3 stretching vibration in methanol-water mixtures. It shows that the conventional O-H···O hydrogen bonds do not fully dominate the origin of the C-H blue shift and the weak C-H···O interactions also contribute to it. This is consistent with the temperature-dependent results, which reveal that the C-H···O interaction is enhanced upon increasing the temperature, leading to further C-H blue shift in observed spectra at high temperature. This behavior is in contrast with the general trend that the conventional O-H···O hydrogen bond is destroyed by the temperature. The results will shed new light onto the nature of the C-H···O interaction and be helpful to understand hydrophilic and hydrophobic interactions of amphiphilic molecules in different environments.

11.
J Chem Phys ; 146(6): 064307, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28201899

RESUMO

The B2Σ- - X2Π3/2(0,0) bands of a cold molecular beam sample of gold monoxide, AuO, and gold monosulfide, AuS, have been recorded at high resolution both field free and in the presence of a static electric field. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments, µâ†’el, of 2.94±0.06 D and 2.22±0.05 D for the X2Π3/2(v = 0) states of AuO and AuS, respectively. A molecular orbital correlation diagram is used to rationalize the trend in ground state µâ†’el values for AuX (X = F, Cl, O, and S) molecules. The experimentally determined µâ†’el are compared to those computed at the coupled-cluster singles and doubles (CCSD) level augmented with a perturbative inclusion of triple excitations (CCSD(T)) level of theory.

12.
Phys Chem Chem Phys ; 18(15): 10563-72, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27031287

RESUMO

The development of potential probes to identify molecular conformation is essential in organic and biological chemistry. In this work, we investigated a site-specific C-H stretching vibration as a conformational probe for a model compound, 1,1,3,3,3-deuterated n-propanol (CD3CH2CD2OH), using stimulated photoacoustic Raman spectroscopy in the gas phase and conventional spontaneous Raman spectroscopy in the liquid state. Along with quantum chemistry calculations, the experiment shows that the CH2 symmetric stretching mode at the ß-carbon position is very sensitive to the conformational structure of n-propanol and can serve as a new probe for all five of its conformers. Compared with the O-H stretching vibration, a well-established conformational sensor for n-propanol, the Cß-H stretching vibration presented here shows better conformational resolution in the liquid state. Furthermore, using this probe, we investigated the conformational preference of n-propanol in pure liquid and in dilute water solution. It is revealed that in pure liquid, n-propanol molecules prefer the trans-OH conformation, and in dilute water solution, this preference is enhanced, indicating that the water molecules play a role of further stabilizing the trans-OH n-propanol conformers. This leads to conformational evolution that n-propanol molecules with gauche-OH structure are transferred to the trans-OH structure upon diluting with water. These results not only provide important information on structures of n-propanol in different environments, but also demonstrate the potential of the C-H stretching vibration as a new tool for conformational analysis. This is especially important when considering that hydrocarbon chains are structural units in organic and biological molecules.

13.
J Phys Chem A ; 119(13): 3209-17, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25774682

RESUMO

The spontaneous polarized Raman spectra of normal and deuterated alcohols (C2-C5) have been recorded in the C-H stretching region. In the isotropic Raman spectra, a doublet of -CαH stretching vibration is found for all alcohols at below 2900 cm(-1) and above 2950 cm(-1). By comparing the experimental and calculated spectra of various deuterated alcohols, the doublets are attributed to the -CαH stretching vibration of different conformers. For ethanol, the band observed at 2970 cm(-1) is assigned as the stretching vibration of -CαH in the Cα-O-H plane of the gauche-conformer, while the band at 2895 cm(-1) is contributed from both the -CαH2 symmetrical stretching vibration of the trans-conformer and the -CαH stretching vibration out of the Cα-O-H plane of the gauche-conformer. The population of gauche-conformer is estimated to be 54% in liquid ethanol. For the larger alcohols, the same assignments for the doublet are obtained, and the populations of gauche-conformers with plane carbon skeleton are found to be slightly larger than that of ethanol, which is consistent with results from molecular dynamics simulations.


Assuntos
1-Propanol/química , Etanol/química , Análise Espectral Raman/métodos , Deutério , Ligação de Hidrogênio , Software
14.
J Phys Chem A ; 117(21): 4377-84, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23639010

RESUMO

In this work, the Raman spectrum of gaseous methanol in the C-H stretching region was investigated by polarized Photoacoustic Raman spectroscopy (PARS). On the basis of the depolarization ratio measurement and density functional theory (DFT) calculations, a complete spectral assignment has been presented. The band at ~2845 cm(-1) was assigned to CH3 symmetric stretching, the bands at ~2925 and ~2955 cm(-1) were assigned to two Fermi resonance modes of CH3 bending overtones, and the bands at ~2961 and ~3000 cm(-1) were assigned to out-of-plane and in-plane vibrations of splitting CH3 antisymmetric stretching. Such assignments can clarify the confusions among the previous spectral studies from the different experimental methods and be confirmed by the Raman spectrum of liquid methanol. Furthermore, the large splitting of 39 cm(-1) between two antisymmetric stretching in gaseous methanol was ascribed to the strong coupling between CH3 and OH groups within methanol molecule because it decreased rapidly in other long-chain alcohol, such as CH3CD2OH.


Assuntos
Metanol/química , Teoria Quântica , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...