Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Pharmacol Res ; 203: 107160, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547937

RESUMO

Immunostimulatory antibody conjugates (ISACs) as a promising new generation of targeted therapeutic antibody-drug conjugates (ADCs), that not only activate innate immunity but also stimulate adaptive immunity, providing a dual therapeutic effect to eliminate tumor cells. However, several ISACs are still in the early stages of clinical development or have already failed. Therefore, it is crucial to design ISACs more effectively to overcome their limitations, including high toxicity, strong immunogenicity, long development time, and poor pharmacokinetics. This review aims to summarize the composition and function of ISACs, incorporating current design considerations and ongoing clinical trials. Additionally, the review delves into the current issues with ISACs and potential solutions, such as adjusting the drug-antibody ratio (DAR) to improve the bioavailability of ISACs. By leveraging the affinity and bioavailability-enhancing properties of bispecific antibodies, the utility between antibodies and immunostimulatory agents can be balanced. Commonly used immunostimulatory agents may induce systemic immune reactions, and BTK (Bruton's tyrosine kinase) inhibitors can regulate immunogenicity. Finally, the concept of grafting ADC's therapeutic principles is simple, but the combination of payload, linker, and targeted functional molecules is not a simple permutation and combination problem. The development of conjugate drugs faces more complex pharmacological and toxicological issues. Standing on the shoulders of ADC, the development and application scenarios of ISAC are endowed with broader space.


Assuntos
Imunoconjugados , Humanos , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Animais , Neoplasias/tratamento farmacológico , Neoplasias/imunologia
2.
World J Gastrointest Oncol ; 16(2): 259-272, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38425391

RESUMO

Approximately 20% of colorectal cancer (CRC) patients present with metastasis at diagnosis. Among Stage I-III CRC patients who undergo surgical resection, 18% typically suffer from distal metastasis within the first three years following initial treatment. The median survival duration after the diagnosis of metastatic CRC (mCRC) is only 9 mo. mCRC is traditionally considered to be an advanced stage malignancy or is thought to be caused by incomplete resection of tumor tissue, allowing cancer cells to spread from primary to distant organs; however, increasing evidence suggests that the mCRC process can begin early in tumor development. CRC patients present with high heterogeneity and diverse cancer phenotypes that are classified on the basis of molecular and morphological alterations. Different genomic and nongenomic events can induce subclone diversity, which leads to cancer and metastasis. Throughout the course of mCRC, metastatic cascades are associated with invasive cancer cell migration through the circulatory system, extravasation, distal seeding, dormancy, and reactivation, with each step requiring specific molecular functions. However, cancer cells presenting neoantigens can be recognized and eliminated by the immune system. In this review, we explain the biological factors that drive CRC metastasis, namely, genomic instability, epigenetic instability, the metastatic cascade, the cancer-immunity cycle, and external lifestyle factors. Despite remarkable progress in CRC research, the role of molecular classification in therapeutic intervention remains unclear. This review shows the driving factors of mCRC which may help in identifying potential candidate biomarkers that can improve the diagnosis and early detection of mCRC cases.

3.
Int J Biol Macromol ; 259(Pt 2): 129320, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218276

RESUMO

Polysaccharides possess excellent moisturizing effects due to their abundance of hydrophilic groups and film-forming properties. Additionally, they can produce a refreshing aroma during the pyrolysis process. However, there is scarce research on their application in the tobacco field. Herein, we investigated the effects of low molecular weight fenugreek polysaccharide (FP) obtained through ethanol fractionation and DEAE-52 cellulose column chromatography on moisture retention and aroma enhancement in tobacco. The moisture retention test revealed that the addition of FP increased the moisture retention index (MRI) of tobacco by 11.72 %-16.69 %, indicating that the hydrophilic nature of polysaccharides facilitated the migration of free water in tobacco to bound water, resulting in reduced water activity. Moreover, the contact angle between polysaccharide and tobacco was <90°, enabling better infiltration into tobacco and slowing down tobacco shrinkage caused by water loss. Among all the components, EFP-20 and EFP-40 demonstrated superior performance. Furthermore, FP exhibited excellent thermal stability below 200 °C and can decomposed to produce aromatic substances at high temperatures. It also demonstrated the ability to adsorb ethyl heptanoate and thermally decompose to produce a substantial amount of heptanoic acid. Consequently, the incorporation of FP in tobacco demonstrated favorable effects on both moisturization and aroma enhancement.


Assuntos
Produtos do Tabaco , Trigonella , Odorantes/análise , Peso Molecular , Polissacarídeos/farmacologia , Polissacarídeos/química , Água/química
4.
Acta Pharm Sin B ; 13(2): 498-516, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873165

RESUMO

Peptide-drug conjugates (PDCs) are the next generation of targeted therapeutics drug after antibody-drug conjugates (ADCs), with the core benefits of enhanced cellular permeability and improved drug selectivity. Two drugs are now approved for market by US Food and Drug Administration (FDA), and in the last two years, the pharmaceutical companies have been developing PDCs as targeted therapeutic candidates for cancer, coronavirus disease 2019 (COVID-19), metabolic diseases, and so on. The therapeutic benefits of PDCs are significant, but poor stability, low bioactivity, long research and development time, and slow clinical development process as therapeutic agents of PDC, how can we design PDCs more effectively and what is the future direction of PDCs? This review summarises the components and functions of PDCs for therapeutic, from drug target screening and PDC design improvement strategies to clinical applications to improve the permeability, targeting, and stability of the various components of PDCs. This holds great promise for the future of PDCs, such as bicyclic peptide‒toxin coupling or supramolecular nanostructures for peptide-conjugated drugs. The mode of drug delivery is determined according to the PDC design and current clinical trials are summarised. The way is shown for future PDC development.

5.
Front Oncol ; 13: 1107631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895477

RESUMO

Advanced non-small cell lung cancer (NSCLC) is a severe disease and still has high mortality rate after conventional treatment (e.g., surgical resection, chemotherapy, radiotherapy and targeted therapy). In NSCLC patients, cancer cells can induce immunosuppression, growth and metastasis by modulating cell adhesion molecules of both cancer cells and immune cells. Therefore, immunotherapy is increasingly concerned due to its promising anti-tumor effect and broader indication, which targets cell adhesion molecules to reverse the process. Among these therapies, immune checkpoint inhibitors (mainly anti-PD-(L)1 and anti-CTLA-4) are most successful and have been adapted as first or second line therapy in advanced NSCLC. However, drug resistance and immune-related adverse reactions restrict its further application. Further understanding of mechanism, adequate biomarkers and novel therapies are necessary to improve therapeutic effect and alleviate adverse effect.

6.
Cancer Cell ; 40(12): 1566-1582.e10, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306790

RESUMO

N6-Methyladenosine (m6A) modification and its modulators play critical roles and show promise as therapeutic targets in human cancers, including acute myeloid leukemia (AML). IGF2BP2 was recently reported as an m6A binding protein that enhances mRNA stability and translation. However, its function in AML remains largely elusive. Here we report the oncogenic role and the therapeutic targeting of IGF2BP2 in AML. High expression of IGF2BP2 is observed in AML and associates with unfavorable prognosis. IGF2BP2 promotes AML development and self-renewal of leukemia stem/initiation cells by regulating expression of critical targets (e.g., MYC, GPT2, and SLC1A5) in the glutamine metabolism pathways in an m6A-dependent manner. Inhibiting IGF2BP2 with our recently identified small-molecule compound (CWI1-2) shows promising anti-leukemia effects in vitro and in vivo. Collectively, our results reveal a role of IGF2BP2 and m6A modification in amino acid metabolism and highlight the potential of targeting IGF2BP2 as a promising therapeutic strategy in AML.


Assuntos
Glutamina , Leucemia Mieloide Aguda , Humanos , Glutamina/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Estabilidade de RNA , Prognóstico , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
Int Immunopharmacol ; 109: 108783, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35561479

RESUMO

The rapid development of bioengineering technology has introduced Fc-fusion proteins, representing a novel kind of recombinant protein, as promising biopharmaceutical products in tumor therapy. Numerous related anti-tumor Fc-fusion proteins have been investigated and are in different stages of development. Fc-fusion proteins are constructed by fusing the Fc-region of the antibody with functional proteins or peptides. They retain the bioactivity of the latter and partial properties of the former. This structural and functional advantage makes Fc-fusion proteins an effective tool in tumor immunotherapy, especially for the recruitment and activation of natural killer (NK) cells, which play a critical role in tumor immunotherapy. Even though tumor cells have developed mechanisms to circumvent the cytotoxic effect of NK cells or induce defective NK cells, Fc-fusion proteins have been proven to effectively activate NK cells to kill tumor cells in different ways, such as antibody-dependent cell-mediated cytotoxicity (ADCC), activate NK cells in different ways in order to promote killing of tumor cells. In this review, we focus on NK cell-based immunity for cancers and current research progress of the Fc-fusion proteins for anti-tumor therapy by activating NK cells.


Assuntos
Fragmentos Fc das Imunoglobulinas , Células Matadoras Naturais , Citotoxicidade Celular Dependente de Anticorpos , Fragmentos Fc das Imunoglobulinas/genética , Imunoterapia , Proteínas Recombinantes de Fusão/genética
9.
Oncol Rep ; 47(6)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35543152

RESUMO

After the publication of the article, an interested reader drew to the authors' attention that there appeared to be a pair of overlapping data panels in Fig. 4C on p. 1726 [specifically, the 'Untransfected' and 'Control shRNA' data panels for the ADM (24 h) experiments]. The authors have consulted their original data, and have realized that this figure was inadvertently assembled incorrectly. Furthermore, they have noticed that Fig. 1 on p. 1724 also contained errors that arose during its assembly; essentially, several of the data panels in Fig. 1C, showing the detection of FANCD2 focus formation via immunofluorescence experiments, were selected inappropriately. The corrected versions of Figs. 1 and 4, containing the corrected data panels for Figs. 1C and 4C respectively, are shown on the next page. Note that these errors did not affect the results or the conclusions reported in this work. The authors all agree to this Corrigendum, and are grateful to the Editor of Oncology Reports for allowing them to have the opportunity to correct these mistakes. Lastly, the authors apologize to the readership for any inconvenience these errors may have caused. [Oncology Reports 29: 1721­1729, 2013; DOI: 10.3892/or.2013.2295].

10.
Oncol Rep ; 47(6)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35417034

RESUMO

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that the data panel for the MDA­MB­231/migration/NC experiment in Fig. 2B on p. 1428 was strikingly similar to the data shown for the MDA­MB­231/invasion/Blank experiment in Fig. 2C, such that these data appeared to have been derived from the same original source. The authors have referred back to their original data, and realize that the data panel was selected incorrectly for Fig. 2B. The corrected version of Fig. 2, showing the correct data for the MDA­MB­231/migration/NC experiment in Fig. 2B, is shown on the next page. The authors regret the error that was made during the preparation of this figure, and can confirm that the error in the assembly of this figure did not adversely affect the conclusions reported in the study. The authors are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish a Corrigendum, and all the authors agree to this Corrigendum. Furthermore, they apologize to the readership for any inconvenience caused. [the original article was published in Oncology Reports 35: 1425­1432, 2016; DOI: 10.3892/or.2015.4502].

11.
Int J Oncol ; 60(5)2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35348188

RESUMO

Following the publication of the above paper, a concerned reader drew to the Editor's attention that one of the fluorescence microscopic images featured in Fig. 4A had previously appeared in a different form (a portion of data in a different orientation) in another article published by the same authors [Yu J, Zhao L, Li Y, Li N, He M, Bai H, Yu Z, Zheng Z, Mi X, Wang E and We M: Silencing of Fanconi anemia complementation group F exhibits potent chemosensitization of mitomycin C activity in breast cancer cells. J Breast Cancer 16: 291­299, 2013]. Furthermore, the data panel shown for the 'MDA­MB­231/untreated' experiment in Fig. 4A in the above paper appeared to be duplicated as the 'MDA­MB­231/MMC + control shRNA' experiment, albeit stained differently. After having received a request from the authors to publish a corrigendum in view of the errors identified in Fig. 4 of the above paper, the Editor of International Journal of Oncology has conducted an independent investigation of the matter and determined that this article should be retracted from the Journal on account of a lack of confidence in the presented data. Upon receiving this decision, the authors were not in agreement that the paper should be retracted. The Editor regrets any inconvenience that has been caused to the readership of the Journal. [the original article was published in International Journal of Oncology 45: 129­138, 2014; DOI: 10.3892/ijo.2014.2400].

13.
Am J Cancer Res ; 11(10): 5076-5093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765313

RESUMO

Hypoxia is a common feature of tumor microenvironment (TME). This study aims to establish the genetic features related to hypoxia in Bladder urothelial carcinoma (BLCA) and investigate the potential correlation with hypoxia in the TME and immune cells. We established a BLCA outcome model using the hypoxia-related genes from The Cancer Genome Atlas using regression analysis and verified the model using the Gene Expression Omnibus GSE32894 cohort. We measured the effect of each gene in the hypoxia-related risk model using the Human Protein Atlas website. The predictive abilities were compared using the area under the receiver operating characteristic curves. Gene Set Enrichment Analysis was utilized for indicating enrichment pathways. We analyzed immune cell infiltration between risk groups using the CIBERSORT method. The indicators related to immune status between the two groups were also analyzed. The findings indicated that the high-risk group had better outcomes than the low-risk group in the training and validation sets. Each gene in the model affected the survival of BLCA patients. Our hypoxia-related risk model had better performance compared to other hypoxia-related markers (HIF-1α and GLUT-1). The high-risk group was enriched in immune-related pathways. The expression of chemokines and immune cell markers differed significantly between risk groups. Immune checkpoints were more highly expressed in the high-risk group. These findings suggest that the hypoxia-related risk model predicts patients' outcomes and immune status in BLCA risk groups. Our findings may contribute to the treatment of BLCA.

15.
Int Immunopharmacol ; 101(Pt A): 108148, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34653955

RESUMO

BACKGROUND: Based on the interaction between cytotoxic T lymphocyte (CTL) dominant epitopes and dendritic cells (DCs), CD8+T cells are specifically activated into CTL cells. Targeted killing is a type of tumor vaccine for immunotherapy with great development potential. However, because of the disadvantages of poor stability in vivo and low uptake rate of DCs caused by single use of dominant epitope peptide drugs, its use is limited. Here, we investigated the antitumor potential of M-YL/LA-Lipo, a novel liposome drug delivery system. METHODS: We assembled mannose on the surface of liposome, which has a highly targeted effect on the mannose receptor on the surface of DCs. The dominant epitope peptide drugs were encapsulated into the liposome using membrane hydration method, and the encapsulation rate, release rate, in vitro stability, and microstructure were characterized using ultrafiltration method, dialysis method, and negative staining transmission electron microscopy. In addition, its targeting ability was verified by in vitro interaction with DCs, and its anticancer effect was verified by animal experiments. RESULTS: We have successfully prepared a liposome drug delivery system with stable physical and chemical properties. Moreover, we demonstrated that it was highly uptaken by DCs and promoted DC maturation in vitro. Furthermore, in vivo animal experiments indicated that M-YL/LA-Lipo specific CTL significantly inhibited the hematogenous spread of lung metastasis of triple negative breast cancer. CONCLUSIONS: we successfully constructed a new polypeptide liposome drug delivery system by avoiding the disadvantages of single use of dominant epitope peptide drugs and accurate targeted therapy for tumors.


Assuntos
Vacinas Anticâncer/administração & dosagem , Epitopos de Linfócito T/administração & dosagem , Manose/química , Neoplasias/terapia , Animais , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Imunogenicidade da Vacina , Lipossomos , Receptor de Manose , Camundongos Transgênicos , Neoplasias/imunologia , Cultura Primária de Células , Linfócitos T Citotóxicos/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia
17.
Am J Cancer Res ; 11(6): 2401-2416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249407

RESUMO

Tumor immunotherapy has now become one of the most potential therapy for those intractable cancer diseases. The antigens on the cancer cell surfaces are the keys for the immune system to recognize and eliminate them. As reported, the immunogenicity of the tumor antigens could be determined by the binding between the key epitope peptides and MHC molecules. In recent years, the approaches to anticipate the peptides from the candidate epitopes have gradually changed into more efficient methods. Including the improved conventional methods, more diverse methods were coming into view. Here we review the anticipated methods of the tumor associated epitopes that specifically bind with major histocompatibility complex (MHC) class I molecules, and the recent advances and applications of those epitope prediction methods.

18.
Onco Targets Ther ; 14: 3861-3872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34188492

RESUMO

BACKGROUND: The relapse and distant metastasis in colon adenocarcinoma (COAD) patients with a poor prognosis. Autophagy has gained increasing attention recently. METHODS: This study utilized univariate Cox analysis from the TCGA database to obtain 10 prognostic autophagy-related genes (ARGs). GO and KEGG functional annotation analysis suggested that the ARGs were significantly enriched in tumor metabolic processes. We verified the autophagy-related genes screened by TCGA clinical data. Then, we compared the expression of SERPINA1 in primary and metastatic tumor cells in the GEO database, and finally verified the relationship between SERPINA1 protein expression and prognosis with the CPTAC database. RESULTS: The ROC curves showed SERPINA1 had robust prediction capability in judging the prognosis and disease process compared with the other 4 ARGs and risk score in COAD. Clinical relationship analysis further indicated SERPINA1 was related to TMN stage, clinical-stage, OS, RFS, and DMFS in COAD. Besides, survival analysis presented that higher expression of SERPINA1 was significantly associated with the longer OS, RFS, or DMFS. Moreover, SERPINA1 protein was validated to be associated with OS, RFS, and DMFS through our own IHC and CPTAC database. Finally, we exploratoryly combined the SERPINA1 mRNA and SERPINA1 protein as a new index for prognostics. CONCLUSION: This new combined index showed the highest prognostic value for OS, RFS, and DMFS, and had the potential to become a practical biomarker for prognosis.

19.
J Anal Methods Chem ; 2021: 8434204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34123459

RESUMO

In this study, The metabolites, metabolic pathways, and metabolic fragmentation mode of a tyrosine kinase inhibitor- (TKI-) imatinib in rats were investigated. The samples for analysis were pretreated via solid-phase extraction, and the metabolism of imatinib in rats was studied using ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS). Eighteen imatinib metabolites were identified in rat plasma, 21 in bile, 18 in urine, and 12 in feces. Twenty-seven of the above compounds were confirmed as metabolites of imatinib and 9 of them were newly discovered for the first time. Oxidation, hydroxylation, dealkylation, and catalytic dehydrogenation are the main metabolic pathways in phase I. For phase II, the main metabolic pathways were N-acetylation, methylation, cysteine, and glucuronidation binding. The fragment ions of imatinib and its metabolites were confirmed to be produced by the cleavage of the C-N bond at the amide bond. The newly discovered metabolite of imatinib was identified by UHPLC-Q-TOF-MS/MS. The metabolic pathway of imatinib and its fragmentation pattern were summarized. These results could be helpful to study the safety of imatinib for clinical use.

20.
Drug Deliv ; 28(1): 884-893, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33960253

RESUMO

Full thickness cutaneous wound therapy and regeneration remains a critical challenge in clinical therapeutics. Recent reports have suggested that mesenchymal stem cells exosomes therapy is a promising technology with great potential to efficiently promote tissue regeneration. Multifunctional hydrogel composed of both synthetic materials and natural materials is an effective carrier for exosomes loading. Herein, we constructed a biodegradable, dual-sensitive hydrogel encapsulated human umbilical cord-mesenchymal stem cells (hUCMSCs) derived exosomes to facilitate wound healing and skin regeneration process. The materials characterization, exosomes identification, and in vivo full-thickness cutaneous wound healing effect of the hydrogels were performed and evaluated. The in vivo results demonstrated the exosomes loaded hydrogel had significantly improved wound closure, re-epithelialization rates, collagen deposition in the wound sites. More skin appendages were observed in exosomes loaded hydrogel treated wound, indicating the potential to achieve complete skin regeneration. This study provides a new access for complete cutaneous wound regeneration via a genipin crosslinked dual-sensitive hydrogel loading hUCMSCs derived exosomes.


Assuntos
Exossomos/metabolismo , Hidrogéis/química , Iridoides/farmacologia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Colágeno/metabolismo , Liberação Controlada de Fármacos , Feminino , Concentração de Íons de Hidrogênio , Iridoides/administração & dosagem , Células-Tronco Mesenquimais/efeitos dos fármacos , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...