Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fitoterapia ; 174: 105868, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378133

RESUMO

In this study, the extract from Artabotrys hexapetalus showed strong antifungal activity against phytopathogenic fungi in vitro. Four unreported aporphine alkaloids, hexapetalusine A-D (1-4), were isolated from stems and roots of Artabotrys hexapetalus (L.f.) Bhandari, along with six known aporphine alkaloids (5-10). Their chemical structures were elucidated by extensive spectroscopic analysis. The absolute configurations of 1-3 were determined using single-crystal X-ray diffractions and ECD calculations. Hexapetalusine A-C (1-3) were special amidic isomers. Additionally, all isolated compounds were evaluated for their antifungal activity against four phytopathogenic fungi in vitro. Hexapetalusine D (4) exhibited weak antifungal activity against Curvularia lunata. Liriodenine (5) displayed significant antifungal activity against Fusarium proliferatum and Fusarium oxysporum f. sp. vasinfectum, which is obviously better than positive control nystatin, suggesting that it had great potential to be developed into an effective and eco-friendly fungicide.


Assuntos
Annonaceae , Aporfinas , Antifúngicos/farmacologia , Antifúngicos/química , Estrutura Molecular , Fungos , Aporfinas/farmacologia , Annonaceae/química
3.
J Plant Physiol ; 285: 153983, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37116390

RESUMO

In view of the nephrotoxicity, hepatotoxicity, and carcinogenicity of aristolochic acids (AAs), the removal of AAs from plants becomes an urgent priority for ensuring the safety of Aristolochia herbal materials. In this study, based on the root-predominant distribution of aristolochic acid I (AAI) in Aristolochia debilis, transcriptome sequencing, in combination with phylogenetic analyses, and gene expression pattern analysis together provided five candidate genes for investigating AAI biosynthesis. Comprehensive in vitro and in vivo enzymatic assays revealed that Ab6OMT1 (6-O-methyltransferase) and AbNMT1 (N-methyltransferase) exhibit promiscuity in substrate recognition, and they could act in a cooperative fashion to achieve conversion of norlaudanosoline, a predicted intermediate in AAI biosynthetic route, into 3'-hydroxy-N-methylcoclaurine through two different methylation reaction sequences. These results shed light on the molecular basis for AAI biosynthesis in Aristolochia herbs. More importantly, Ab6OMT1 and AbNMT1 may be employed as targets for the metabolic engineering of AAI biosynthesis to produce AAs-free Aristolochia herbal materials.


Assuntos
Aristolochia , Aristolochia/genética , Aristolochia/química , Tetra-Hidropapaverolina , Metiltransferases/genética , Filogenia , Plantas
4.
Ann Clin Transl Neurol ; 10(6): 892-903, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37014017

RESUMO

OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons, with broad heterogeneity in disease progression and survival in different patients. Therefore, an accurate prediction model will be crucial to implement timely interventions and prolong patient survival time. METHODS: A total of 1260 ALS patients from the PRO-ACT database were included in the analysis. Their demographics, clinical variables, and death reports were included. We constructed an ALS dynamic Cox model through the landmarking approach. The predictive performance of the model at different landmark time points was evaluated by calculating the area under the curve (AUC) and Brier score. RESULTS: Three baseline covariates and seven time-dependent covariates were selected to construct the ALS dynamic Cox model. For better prognostic analysis, this model identified dynamic effects of treatment, albumin, creatinine, calcium, hematocrit, and hemoglobin. Its prediction performance (at all landmark time points, AUC ≥ 0.70 and Brier score ≤ 0.12) was better than that of the traditional Cox model, and it predicted the dynamic 6-month survival probability according to the longitudinal information of individual patients. INTERPRETATION: We developed an ALS dynamic Cox model with ALS longitudinal clinical trial datasets as the inputs. This model can not only capture the dynamic prognostic effect of both baseline and longitudinal covariates but also make individual survival predictions in real time, which are valuable for improving the prognosis of ALS patients and providing a reference for clinicians to make clinical decisions.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Prognóstico , Progressão da Doença , Modelos de Riscos Proporcionais
5.
Nat Commun ; 14(1): 209, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639377

RESUMO

Angiotensin-converting enzyme inhibitors are widely used for treatment of hypertension and related diseases. Here, six karnamicins E1-E6 (1-6), which bear fully substituted hydroxypyridine and thiazole moieties are characterized from the rare actinobacterium Lechevalieria rhizosphaerae NEAU-A2. Through a combination of isotopic labeling, genome mining, and enzymatic characterization studies, the programmed assembly of the fully substituted hydroxypyridine moiety in karnamicin is proposed to be due to sequential operation of a hybrid polyketide synthase-nonribosomal peptide synthetase, two regioselective pyridine ring flavoprotein hydroxylases, and a methyltransferase. Based on AlphaFold protein structures predictions, molecular docking, and site-directed mutagenesis, we find that two pyridine hydroxylases deploy active site residues distinct from other flavoprotein monooxygenases to direct the chemo- and regioselective hydroxylation of the pyridine nucleus. Pleasingly, karnamicins show significant angiotensin-converting enzyme inhibitory activity with IC50 values ranging from 0.24 to 5.81 µM, suggesting their potential use for the treatment of hypertension and related diseases.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Anti-Hipertensivos , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Simulação de Acoplamento Molecular , Piridinas , Oxigenases de Função Mista
6.
BMC Nephrol ; 23(1): 359, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344916

RESUMO

BACKGROUND: Predicting allograft survival is vital for efficient transplant success. With dynamic changes in patient conditions, clinical indicators may change longitudinally, and doctors' judgments may be highly variable. It is necessary to establish a dynamic model to precisely predict the individual risk/survival of new allografts. METHODS: The follow-up data of 407 patients were obtained from a renal allograft failure study. We introduced a landmarking-based dynamic Cox model that incorporated baseline values (age at transplantation, sex, weight) and longitudinal changes (glomerular filtration rate, proteinuria, hematocrit). Model performance was evaluated using Harrell's C-index and the Brier score. RESULTS: Six predictors were included in our analysis. The Kaplan-Meier estimates of survival at baseline showed an overall 5-year survival rate of 87.2%. The dynamic Cox model showed the individual survival prediction with more accuracy at different time points (for the 5-year survival prediction, the C-index = 0.789 and Brier score = 0.065 for the average of all time points) than the static Cox model at baseline (C-index = 0.558, Brier score = 0.095). Longitudinal covariate prognostic analysis (with time-varying effects) was performed. CONCLUSIONS: The dynamic Cox model can utilize clinical follow-up data, including longitudinal patient information. Dynamic prediction and prognostic analysis can be used to provide evidence and a reference to better guide clinical decision-making for applying early treatment to patients at high risk.


Assuntos
Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Prognóstico , Transplante Homólogo , Taxa de Filtração Glomerular , Aloenxertos
7.
Front Immunol ; 13: 971531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059544

RESUMO

Purpose: To construct a dynamic prediction model for BK polyomavirus (BKV) reactivation during the early period after renal transplantation and to provide a statistical basis for the identification of and intervention for high-risk populations. Methods: A retrospective study of 312 first renal allograft recipients with strictly punctual follow-ups was conducted between January 2015 and March 2022. The covariates were screened using univariable time-dependent Cox regression, and those with P<0.1 were included in the dynamic and static analyses. We constructed a prediction model for BKV reactivation from 2.5 to 8.5 months after renal transplantation using dynamic Cox regression based on the landmarking method and evaluated its performance using the area under the curve (AUC) value and Brier score. Monte-Carlo cross-validation was done to avoid overfitting. The above evaluation and validation process were repeated in the static model (Cox regression model) to compare the performance. Two patients were presented to illustrate the application of the dynamic model. Results: We constructed a dynamic prediction model with 18 covariates that could predict the probability of BKV reactivation from 2.5 to 8.5 months after renal transplantation. Elder age, basiliximab combined with cyclophosphamide for immune induction, acute graft rejection, higher body mass index, estimated glomerular filtration rate, urinary protein level, urinary leukocyte level, and blood neutrophil count were positively correlated with BKV reactivation, whereas male sex, higher serum albumin level, and platelet count served as protective factors. The AUC value and Brier score of the static model were 0.64 and 0.14, respectively, whereas those of the dynamic model were 0.79 ± 0.05 and 0.08 ± 0.01, respectively. In the cross-validation, the AUC values of the static and dynamic models decreased to 0.63 and 0.70 ± 0.03, respectively, whereas the Brier score changed to 0.11 and 0.09 ± 0.01, respectively. Conclusion: Dynamic Cox regression based on the landmarking method is effective in the assessment of the risk of BKV reactivation in the early period after renal transplantation and serves as a guide for clinical intervention.


Assuntos
Vírus BK , Transplante de Rim , Infecções por Polyomavirus , Infecções Tumorais por Vírus , Idoso , Vírus BK/fisiologia , Humanos , Transplante de Rim/efeitos adversos , Masculino , Infecções por Polyomavirus/urina , Estudos Retrospectivos
8.
JBMR Plus ; 6(5): e10623, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35509638

RESUMO

The expression of microRNAs (miRNAs) is dysregulated in many types of cancers including osteosarcoma (OS) due to genetic and epigenetic alterations. Among these, miR-34c, an effector of tumor suppressor P53 and an upstream negative regulator of Notch signaling in osteoblast differentiation, is dysregulated in OS. Here, we demonstrated a tumor suppressive role of miR-34c in OS progression using in vitro assays and in vivo genetic mouse models. We found that miR-34c inhibits the proliferation and the invasion of metastatic OS cells, which resulted in reduction of the tumor burden and increased overall survival in an orthotopic xenograft model. Moreover, the osteoblast-specific overexpression of miR-34c increased survival in the osteoblast specific p53 mutant OS mouse model. We found that miR-34c regulates the transcription of several genes in Notch signaling (NOTCH1, JAG1, and HEY2) and in p53-mediated cell cycle and apoptosis (CCNE2, E2F5, E2F2, and HDAC1). More interestingly, we found that the metastatic-free survival probability was increased among a patient cohort from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) OS, which has lower expression of direct targets of miR-34c that was identified in our transcriptome analysis, such as E2F5 and NOTCH1. In conclusion, we demonstrate that miR-34c is a tumor suppressive miRNA in OS progression in vivo. In addition, we highlight the therapeutic potential of targeting miR-34c in OS. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

9.
Angew Chem Int Ed Engl ; 61(19): e202200189, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35191152

RESUMO

Flavin-dependent enzymes enable a broad range of redox transformations and generally act as monofunctional and stereoselective catalysts. Herein, we report the investigation of a multifunctional and non-stereoselective FMN-dependent oxidoreductase RubE7 from the rubrolone biosynthetic pathway. Our study outlines a single RubE7-catalysed sequential reduction of three spatially distinct bonds in a tropolone ring and a reversible double-bond reduction and dehydrogenation. The crystal structure of IstO (a RubE7 homologue) with 2.0 Šresolution reveals the location of the active site at the interface of two monomers, and the size of active site is large enough to permit both flipping and free rotation of the substrate, resulting in multiple nonselective reduction reactions. Molecular docking and site mutation studies demonstrate that His106 is oriented towards the substrate and is important for the reverse dehydrogenation reaction.


Assuntos
Flavinas , Oxirredutases , Catálise , Simulação de Acoplamento Molecular , Oxirredução
10.
J Org Chem ; 86(16): 11198-11205, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33855851

RESUMO

Two heterocycle-fused cytochalasan homodimers, bisaspochalasins D (1) and E (2), were isolated from an endophytic Aspergillus flavipes. Their chemical structures were elucidated using a combination of HRESIMS, NMR, theoretical calculations, and crystallographic techniques. Bisaspochalasin D (1) is dimerized by the first reported naturally occurring triple heterobridged 3,8-dioxa-6-azabicyclo[3.2.1]octane framework, while bisaspochalasin E (2) employs a pyrrole ring as the linking moiety. Possible dimerization mechanisms of bisaspochalasins D and E were proposed. The bioassay screening revealed that bisaspochalasin D showed cytotoxic activities against five cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW-480) with IC50 values ranging from 4.45 to 22.99 µM. Additionally, bisaspochalasin D exhibited neurotrophic activities in a PC12 cell-based assay. At a concentration of 10 µM, bisaspochalasin D can promote neurite growth by inducing a differentiation rate of 12.52% for PC12 cells.


Assuntos
Aspergillus , Citocalasinas , Citocalasinas/farmacologia , Células HL-60 , Humanos , Estrutura Molecular
11.
J Agric Food Chem ; 69(7): 2108-2117, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33586974

RESUMO

In this study, the supernatant extract from fermentation broth of Streptomyces sp. NEAU-H3 showed strong antifungal activity against Fusarium graminearum strain PH-1 in vitro and in vivo. Three known pyranonaphthoquinones were isolated by means of an activity-guided method, and frenolicin B was characterized as the main active ingredient. Frenolicin B displayed strong antifungal activity against F. graminearum strain PH-1 with an EC50 value of 0.51 mg/L, which is lower than that of carbendazim (0.78 mg/L) but higher than that of phenamacril (0.18 mg/L). Frenolicin B could also strongly inhibit the mycelial growth of Fusarium species, including F. graminearum and F. asiaticum, as well as carbendazim-resistant Fusarium strains isolated from field, with EC50 values of 0.25-0.92 mg/L. Results from field experiments showed that the efficacy of frenolicin B in controlling Fusarium head blight at a treatment concentration of 75 g ai/ha was better than those of phenamacril (375 g ai/ha) and carbendazim (600 g ai/ha) or had no significant difference with that of phenamacril (375 g ai/ha) in 2 years. Scanning electron microscope and transmission electron microscope observations revealed that after treating F. graminearum mycelia with frenolicin B, the mycelia appeared aberrant and had an uneven thickness and swelling, the cytoplasm had disintegrated, and some cell contents were lost. Transcriptome analysis suggests that frenolicin B might inhibit the metabolism of nucleotides and energy by affecting genes involved in phosphorus utilization but did not affect the expression of myosin 5, which is the specific target of phenamacril. These findings indicate that frenolicin B may be a potential agrochemical fungicide for controlling Fusarium head blight.


Assuntos
Fungicidas Industriais , Fusarium , Agroquímicos , Fungicidas Industriais/farmacologia , Naftoquinonas , Doenças das Plantas , Triticum
12.
Front Chem ; 9: 812564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087795

RESUMO

During a screening for antifungal secondary metabolites, six new mono-/bis-alkenoic acid derivatives (2-7) and one known alkenoic acid derivative (1) were isolated from an endophytic fungi Scopulariopsis candelabrum. Their chemical structures were identified by 1H-NMR, 13C-NMR, 2D NMR, and high-resolution mass spectrometry, as well as comparisons with previously reported literatures. Among them, fusariumesters C‒F (2-5) are bis-alkenoic acid derivatives dimerized by an ester bond, while acetylfusaridioic acid A (6) and fusaridioic acid D (7) are alkenoic acid monomers. All the isolates were submitted to an antifungal assay against Candida albicans and the corn pathogen Exserohilum turcicum using the filter paper agar diffusion method. As a result, only compound 1 decorating with ß-lactone ring turned out to be active against these two tested fungi. The broth microdilution assay against Candida albicans showed the minimum inhibitory concentration (MIC) value of 1 to be 20 µg/ml, while the minimum inhibitory concentration value of the positive control (naystatin) was 10 µg/ml. And the half maximal inhibitory concentration (IC50) value (21.23 µg/ml) of 1 against Exserohilum turcicum was determined by analyzing its inhibition effect on the mycelial growth, using cycloheximide (IC50 = 46.70 µg/ml) as the positive control.

13.
Front Chem ; 8: 717, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974281

RESUMO

[This corrects the article DOI: 10.3389/fchem.2020.00095.].

14.
Front Chem ; 8: 95, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133345

RESUMO

Six new pimprinine alkaloids (1-6), including four dimers, dipimprinines A-D (1-4), and two monomers, (±)-Pimprinol D (5), and pimprinone A (6), along with six known congeners (7-12), were isolated from a soil-derived actinomycete Streptomyces sp. NEAU-C99. Structures of the new compounds were elucidated by extensive spectroscopic analyses, single-crystal X-ray diffractions, and ECD calculations. Dipimprinines A-D (1-4) showed weak cytotoxic activities against five tumor cell lines, including HL-60, SMMC-7721, A-549, MCF-7, and SW-480, with IC50 values ranging from 12.7 to 30.7 µM.

15.
Front Microbiol ; 11: 201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117188

RESUMO

Actinobacteria associated with insects represent one potentially rich source of novel natural products with antifungal activity. Here, we investigated the phylogenetic diversity and community composition of actinobacteria associated with ants using a combination of culture-dependent and -independent methods. Further, we assessed the antagonistic activity against phytopathogenic fungi and identified the secondary metabolites from isolates with bioactivity. A total of 416 actinobacterial isolates were obtained from three ant species (Camponotus japonicus, Lasius fuliginosus, and Lasius flavus) located in five nests. The largest amount of isolates were observed in the head samples. 16S rRNA gene sequencing showed that the isolates were diverse and belonged to ten genera within the phylum Actinobacteria, with Streptomyces and Micromonospora comprising the most abundant genera. High-throughput sequencing analyses revealed that the actinobacterial communities were more diverse and dominated by the families Nocardioidaceae, Nocardiaceae, Dermacoccaceae, Intrasporangiaceae, and Streptomycetaceae. In addition, 52.3% of the representative isolates had inhibitory properties against phytopathogenic fungi. Chemical analysis of one Streptomyces strain led to the discovery of two known compounds and one new compound. These results demonstrated that ant-derived actinobacteria represented an underexplored bioresource library of diverse and novel taxa that may be of potential interest in the discovery of new agroactive compounds.

17.
Microorganisms ; 8(2)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050670

RESUMO

Microorganisms related to plant roots are vital for plant growth and health and considered to be the second genome of the plant. When the plant is attacked by plant pathogens, the diversity and community structure of plant-associated microbes might be changed. The goal of this study is to characterize differences in root-associated endophytic actinobacterial community composition and antifungal activity between Fusarium wilt diseased and healthy cucumber and screen actinobacteria for potential biological control of Fusarium wilt of cucumber. In the present research, three healthy plants (also termed "islands") and three obviously diseased plants (naturally infected by F. oxysporum f. sp. cucumerinum) nearby the islands collected from the cucumber continuous cropping greenhouse were chosen as samples. Results of culture-independent and culture-dependent analysis demonstrated that actinomycetes in the healthy roots were significantly more abundant than those of diseased roots. Moreover, there were seven strains with antifungal activity against F. oxysporum f. sp. cucumerinum in healthy cucumber roots, but only one strain in diseased cucumber roots. Out of these eight strains, the isolate HAAG3-15 was found to be best as it had the strongest antifungal activity against F. oxysporum f. sp. cucumerinum, and also exhibited broad-spectrum antifungal activity. Thus, strain HAAG3-15 was selected for studying its biocontrol efficacy under greenhouse conditions. The results suggested that the disease incidence and disease severity indices of cucumber Fusarium wilt greatly decreased (p < 0.05) while the height and shoot fresh weight of cucumber significantly increased (p < 0.05) after inoculating strain HAAG3-15. On the basis of morphological characteristics, physiological and biochemical properties and 100% 16S ribosomal RNA (rRNA) gene sequence similarity with Streptomyces sporoclivatus NBRC 100767T, the isolate was assigned to the genus Streptomyces. Moreover, azalomycin B was isolated and identified as the bioactive compound of strain HAAG3-15 based on analysis of spectra using a bioactivity-guided method. The stronger antifungal activity against F. oxysporum f. sp. cucumerinum, the obvious effect on disease prevention and growth promotion on cucumber seedlings in the greenhouse assay, and the excellent broad-spectrum antifungal activities suggest that strain HAAG3-15 could be developed as a potential biocontrol agent against F. oxysporum f. sp. cucumerinum used in organic agriculture. These results suggested that the healthy root nearby the infected plant is a good source for isolating biocontrol and plant growth-promoting endophytes.

18.
Microorganisms ; 8(1)2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31948045

RESUMO

The rhizosphere, an important battleground between beneficial microbes and pathogens, is usually considered to be a good source for isolation of antagonistic microorganisms. In this study, a novel actinobacteria with broad-spectrum antifungal activity, designated strain NEAU-H2T, was isolated from the rhizosphere soil of wheat (Triticum aestivum L.). 16S rRNA gene sequence similarity studies showed that strain NEAU-H2T belonged to the genus Streptomyces, with high sequence similarities to Streptomyces rhizosphaerihabitans NBRC 109807T (98.8%), Streptomyces populi A249T (98.6%), and Streptomyces siamensis NBRC 108799T (98.6%). Phylogenetic analysis based on 16S rRNA, atpD, gyrB, recA, rpoB, and trpB gene sequences showed that the strain formed a stable clade with S. populi A249T. Morphological and chemotaxonomic characteristics of the strain coincided with members of the genus Streptomyces. A combination of DNA-DNA hybridization results and phenotypic properties indicated that the strain could be distinguished from the abovementioned strains. Thus, strain NEAU-H2T belongs to a novel species in the genus Streptomyces, for which the name Streptomyces triticiradicis sp. nov. is proposed. In addition, the metabolites isolated from cultures of strain NEAU-H2T were characterized by nuclear magnetic resonance (NMR) and mass spectrometry (MS) analyses. One new compound and three known congeners were isolated. Further, genome analysis revealed that the strain harbored diverse biosynthetic potential, and one cluster showing 63% similarity to natamycin biosynthetic gene cluster may contribute to the antifungal activity. The type strain is NEAU-H2T (= CCTCC AA 2018031T = DSM 109825T).

19.
J Nat Prod ; 83(1): 111-117, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31904958

RESUMO

Seven new trialkyl-substituted benzene derivatives named benwamycins A-G (1-7), together with three known congeners, 8-10, were isolated from culture broth of the soil-derived Streptomyces sp. KIB-H1471. Their structures were elucidated by using 1D and 2D NMR analyses in combination with HRESIMS data. The absolute configurations of 1-9 were determined by chemical conversion and comparison of circular dichroism spectra and confirmed for 1 by single-crystal X-ray crystallography. Compounds 6 and 7 have a unique γ-pyrone-like ring on one side chain. Compounds 2 and 6 inhibited human T cell proliferation with IC50 values of 14.3 and 12.5 µM, respectively, without obvious cytotoxicity for naïve human T cells. Compounds 3 and 6 could weakly enhance insulin-stimulated glucose uptake.


Assuntos
Derivados de Benzeno/química , Streptomyces/química , Derivados de Benzeno/isolamento & purificação , Proliferação de Células , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Solo
20.
Chem Sci ; 11(15): 3959-3964, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-34122866

RESUMO

Rubrolones, isatropolones, and rubterolones are recently isolated glycosylated tropolonids with notable biological activity. They share similar aglycone skeletons but differ in their sugar moieties, and rubterolones in particular have a rare deoxysugar antiarose of unknown biosynthetic provenance. During our previously reported biosynthetic elucidation of the tropolone ring and pyridine moiety, gene inactivation experiments revealed that RubS3 is involved in sugar moiety biosynthesis. Here we report the in vitro characterization of RubS3 as a bifunctional reductase/epimerase catalyzing the formation of TDP-d-antiarose by epimerization at C3 and reduction at C4 of the key intermediate TDP-4-keto-6-deoxy-d-glucose. These new findings not only explain the biosynthetic pathway of deoxysugars in rubrolone-like natural products, but also introduce RubS3 as a new family of reductase/epimerase enzymes with potential to supply the rare antiarose unit for expanding the chemical space of glycosylated natural products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...