Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 19(5): 1328-1339, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37067645

RESUMO

Tubulins are cytoskeleton components in all eukaryotic cells and play crucial roles in various cellular activities by polymerizing into dynamic microtubules. A subpopulation of tubulin has been shown to localize in the nucleus, however, the function of nuclear tubulin remains largely unexplored. Here we report that microtubule depolymerization specifically upregulates surface CXCR4 expression in human hematopoietic stem cells (HSCs). Mechanistically, microtubule depolymerization results in accumulation of tubulin subunits in the nucleus, leading to elevated CXCR4 transcription and increased chemotaxis of human HSCs. Treatment with microtubule stabilizer Epothilone B strongly suppresses the phenotypes induced by microtubule depolymerizing agents in human HSCs. Furthermore, chromatin immunoprecipitation assay reveals an increased binding of nuclear tubulin and TCF12 transcription factor at the CXCR4 promoter region. Depletion of TCF12 significantly suppresses microtubule depolymerization mediated upregulation of CXCR4 surface expression. These results demonstrate a previously unknown function of nuclear tubulin in regulating gene transcription through TCF12. New strategy targeting nuclear tubulin-TCF12-CXCR4 axis may be applicable to enhance HSC transplantation.


Assuntos
Quimiotaxia , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
2.
J Cell Mol Med ; 27(2): 232-245, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36562207

RESUMO

To explore the role of autophagic flux in the increased susceptibility of the experimental diabetic heart to ischaemia-reperfusion (I/R) injury, we established STZ-induced diabetic mice and performed I/R. In vitro, neonatal mouse cardiomyocytes were subjected to high glucose and hypoxia/reoxygenation challenge to mimic diabetic I/R injury. We found that experimental diabetes aggravated I/R-induced injury than compared with nondiabetic mice. Autophagic flux was impaired in I/R hearts, and the impairment was exacerbated in diabetic mice subjected to I/R with defective autophagosome formation and clearance. Calpains, calcium-dependent thiol proteases, were upregulated and highly activated after I/R of diabetes, while calpain inhibition attenuated cardiac function and cell death and partially restored autophagic flux. The expression levels of Atg5 and LAMP2, two crucial autophagy-related proteins, were significantly degraded in diabetic I/R hearts, alterations that were associated with calpain activation and could be reversed by calpain inhibition. Co-overexpression of Atg5 and LAMP2 reduced myocardial injury and normalized autophagic flux. In conclusion, experimental diabetes exacerbates autophagic flux impairment of cardiomyocytes under I/R stress, resulting in worse I/R-induced injury. Calpain activation and cleavage of Atg5 and LAMP2 at least partially account for the deterioration of autophagic flux impairment.


Assuntos
Diabetes Mellitus Experimental , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Autofagia , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Calpaína/metabolismo , Diabetes Mellitus Experimental/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo
3.
Funct Plant Biol ; 48(8): 743-754, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33663680

RESUMO

Lignin is a natural polymer interlaced with cellulose and hemicellulose in secondary cell walls (SCWs). Auxin acts via its signalling transduction to regulate most of plant physiological processes. Lignification responds to auxin signals likewise and affects the development of anther and secondary xylem in plants. In this review, the research advances of AUXIN RESPONSE FACTOR (ARF)-dependent signalling pathways regulating lignin formation are discussed in detail. In an effort to facilitate the understanding of several key regulators in this process, we present a regulatory framework that comprises protein-protein interactions at the top and protein-gene regulation divided into five tiers. This characterises the regulatory roles of auxin in lignin biosynthesis and links auxin signalling transduction to transcriptional cascade of lignin biosynthesis. Our works further point to several of significant problems that need to be resolved in the future to gain a better understanding of the underlying mechanisms through which auxin regulates lignin biosynthesis.


Assuntos
Ácidos Indolacéticos , Lignina , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Xilema/metabolismo
4.
J Cell Mol Med ; 23(11): 7830-7843, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31502361

RESUMO

Mitochondrial dynamic disorder is involved in myocardial ischemia/reperfusion (I/R) injury. To explore the effect of mitochondrial calcium uniporter (MCU) on mitochondrial dynamic imbalance under I/R and its related signal pathways, a mouse myocardial I/R model and hypoxia/reoxygenation model of mouse cardiomyocytes were established. The expression of MCU during I/R increased and related to myocardial injury, enhancement of mitochondrial fission, inhibition of mitochondrial fusion and mitophagy. Suppressing MCU functions by Ru360 during I/R could reduce myocardial infarction area and cardiomyocyte apoptosis, alleviate mitochondrial fission and restore mitochondrial fusion and mitophagy. However, spermine administration, which could enhance MCU function, deteriorated the above-mentioned myocardial cell injury and mitochondrial dynamic imbalanced. In addition, up-regulation of MCU promoted the expression and activation of calpain-1/2 and down-regulated the expression of Optic atrophy type 1 (OPA1). Meantime, in transgenic mice (overexpression calpastatin, the endogenous inhibitor of calpain) I/R model and OPA1 knock-down cultured cell. In I/R models of transgenic mice over-expressing calpastatin, which is the endogenous inhibitor of calpain, and in H/R models with siOPA1 transfection, inhibition of calpains could enhance mitochondrial fusion and mitophagy, and inhibit excessive mitochondrion fission and apoptosis through OPA1. Therefore, we conclude that during I/R, MCU up-regulation induces calpain activation, which down-regulates OPA1, consequently leading to mitochondrial dynamic imbalance.


Assuntos
Canais de Cálcio/genética , Calpaína/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Dinâmica Mitocondrial , Mitofagia , Traumatismo por Reperfusão Miocárdica/genética , Regulação para Cima , Trifosfato de Adenosina/biossíntese , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Inibidores Enzimáticos/farmacologia , Homeostase/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Substâncias Protetoras/farmacologia , Ratos , Regulação para Cima/efeitos dos fármacos
5.
Chin J Traumatol ; 10(3): 150-3, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17535637

RESUMO

OBJECTIVE: To explore the pathophysiological and biomechanical features of skeletal muscular injury for providing a rational basis for its treatment, prevention and rehabilitation. METHODS: In 70 adult rabbits, the left tibialis anterior (TA) muscle was stretched to injury, while the right TA muscle served as control. Histological, enzymohistochemical and biomechanical changes were observed on days 0, 1, 2, 3, and 7 after injury. Cytochrome oxidase (CCO), acid phosphatase (ACP), ATPase, succinate dehydrogenase (SDH), malate dehydrogenase (MDH), NADH-diaphorase (NADHD), glutamatedehydrogenase (GDH), alpha-glycerophosphate dehydrogenase (alpha-GPD) and lactate dehydrogenase (LDH) were measured. The examined biomechanical parameters included maximal contractile force, ultimate load, length, energy absorption, tangent stiffness, and rupture site. RESULTS: Partial or complete rupture of TA muscle occurred near the muscle-tendon junction. There was an intense inflammatory reaction on day 1 and 2 after injury. Endomysium fibrosis and myotube formation were observed on day 3, and developed further on day 7. The activity of cell oxidases (CCO, ATPase, MDH, alpha-GPD, SDH, NADHD and GDH) showed a significant drop from day 0 to 2, and resumed with different levels on day 3. The increment of enzymatic activities continued on day 7 and the levels of NADHD and alpha-GPD reached to the levels of control muscle. Maximal contractile force was 70.17%+/-3.82% of controls immediately after injury, 54.82%+/-3.09% at 1 day, 66.41%+/-4.36% at 2 days, 78.39%+/-4.90% at 3 days and 93.64%+/-5.02% at 7 days. Ultimate load was 85.78%+/-7.54% of controls at the moment of injury, 61.44%+/-5.91% at 1 day, 49.17%+/-4.26% at 2 days, 64.43%+/-5.02% at 3 days, and 76.71%+/-6.46% at 7 days. CONCLUSIONS: Endomysium fibrosis and scar formation at the injured site are responsible for frequent recurrence of skeletal muscle injury. Recovery of tensile load slower than that of maximal contractile force may be another cause. Whether the injured muscle returns to normal exercise is mainly determined by the tensility on which the muscle-tendon can bear rather than the maximal contractile force.


Assuntos
Músculo Esquelético/lesões , Fosfatase Ácida/análise , Adenosina Trifosfatases/análise , Animais , Fenômenos Biomecânicos , Di-Hidrolipoamida Desidrogenase/análise , Complexo IV da Cadeia de Transporte de Elétrons/análise , Glutamato Desidrogenase/análise , Glicerolfosfato Desidrogenase/análise , L-Lactato Desidrogenase/análise , Malato Desidrogenase/análise , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Coelhos , Succinato Desidrogenase/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...