Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 279: 116869, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39316845

RESUMO

Tubulin, as the fundamental unit of microtubules, is a crucial target in the investigation of anticarcinogens. The synthesis and assessment of small-molecule tubulin polymerization inhibitors remains a promising avenue for the development of novel cancer therapeutics. Through an analysis of reported colchicine-binding site inhibitors (CBSIs) and tubulin binding models, a set of 6-aryl-4-(3,4,5-trimethoxyphenyl)quinoline derivatives were meticulously crafted as potential CBSIs. Notably, compound 14u exhibited potent anti-proliferative efficacy, displaying IC50 values ranging from 0.03 to 0.18 µM against three human cancer cell lines (Huh7, MCF-7, and SGC-7901). Mechanistic investigations revealed that compound 14u could disrupt tubulin polymerization, dismantle the microtubule architecture, arrest the cell cycle at G2/M phase, and induce apoptosis in cancer cells. Furthermore, compound 14u demonstrated significant inhibition of tumor proliferation in vivo with no discernible toxicity in the Huh7 orthotopic tumor model mice. Additionally, physicochemical property predictions indicated that compound 14u adhered well to Lipinski's rule of five. These findings collectively suggest that compound 14u holds promise as an antitumor agent targeting the colchicine-binding site on tubulin and warrants further investigation.

2.
Front Pharmacol ; 15: 1451517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101150

RESUMO

Nitroreductase activable agents offer a personalized and targeted approach to cancer theranostics by selectively activating prodrugs within the tumor microenvironment. These agents enable non-invasive tumor imaging, image-guided drug delivery, and real-time treatment monitoring. By leveraging the enzymatic action of tumor-specific nitroreductase enzymes, cytotoxic drugs are delivered directly to cancer cells while minimizing systemic toxicity. This review highlights the key features, mechanisms of action, diagnostic applications, therapeutic potentials, and future directions of nitroreductase activable agents for tumor theranostics. Integration with imaging modalities, advanced drug delivery systems, immunotherapy combinations, and theranostic biomarkers shows promise for optimizing treatment outcomes and improving patient survival in oncology. Continued research and innovation in this field are crucial for advancing novel theranostic strategies and enhancing patient care. Nitroreductase activable agents represent a promising avenue for personalized cancer therapy and have the potential to transform cancer diagnosis and treatment approaches.

3.
Eur J Med Chem ; 250: 115207, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36796298

RESUMO

All-in-one nano theranostics integrating accurate diagnosis and combined therapy is promising for high-efficacy tumor treatment and receiving significant attention. In this study, we develop photo-controlled release liposomes with nucleic acid-triggered fluorescence and photoactivity for tumor imaging and synergistic antitumor therapy. Copper phthalocyanine as a photothermal agent is fused into lipid layers to prepare liposomes encapsulating cationic zinc phthalocyanine ZnPc(TAP)412+ and doxorubicin, followed by the modification of RGD peptide on the surface to obtain the final product RGD-CuPc:ZnPc(TAP)412+:DOX@LiPOs (RCZDL). RCZDL possesses favorable stability, significant photothermal effect, and photo-controlled release function through the characterization of physicochemical properties. It is shown that the fluorescence and ROS generation could be turned on by intracellular nucleic acid after illumination. RCZDL exhibits synergistic cytotoxicity, increased apoptosis, and significantly promoted cell uptake. Subcellular localization analysis indicates that ZnPc(TAP)412+ tends to be distributed in the mitochondria of HepG2 cells treated with RCZDL after exposure to light. The results of experiments in vivo on H22 tumor-bearing mice demonstrate that RCZDL had excellent tumor targeting, a prominent photothermal effect at the tumor sites, and synergistic antitumor efficiency. More importantly, little RCZDL has been found to be accumulated in the liver, and most were quickly metabolized by the liver. The results confirm that the proposed new intelligent liposomes provide a simple and cost-effective way for tumor imaging and combinatorial anticancer therapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Camundongos , Lipossomos , Preparações de Ação Retardada/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Nanopartículas/química
4.
Eur J Med Chem ; 243: 114700, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36058089

RESUMO

Atropisomers are stereoisomers with axial chirality arising from restricted rotation around a single bond. Lots of representatives of this class of axially chiral compounds exhibit remarkable biological properties for protein targets. This time-dependent chirality shows great potential for drug development. Herein, we comprehensively review axial chirality bioactive compounds, including C-C bonded atropisomers, C-N bonded atropisomers, and N-N bonded atropisomers. Examples of each are provided along with their biological activity. This review highlights the development of various examples of atropisomerism encountered in bioactive compounds, which is beneficial for medicinal chemists to advance atropisomeric drug molecules.


Assuntos
Estereoisomerismo
5.
Front Bioeng Biotechnol ; 9: 780032, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805126

RESUMO

Reactive oxygen species (ROS) encompasses a collection of complicated chemical entities characterized by individually specific biological reactivities and physicochemical properties. ROS detection is attracting tremendous attention. The reaction-based nanomaterials for ROS "turn-on" sensing represent novel and efficient tools for ROS detection. These nanomaterials have the advantages of high sensitivity, real-time sensing ability, and almost infinite contrast against background. This review focuses on appraising nanotechnologies with the ROS "turn-on" detection mechanism coupled with the ability for broad biological applications. In this review, we highlighted the weaknesses and advantages in prior sensor studies and raised some guidelines for the development of future nanoprobes.

6.
Mol Pharm ; 13(5): 1699-710, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27018970

RESUMO

Oleanolic acid (OA) is a well-known pentacyclic triterpenoid compound, which has been used as a dietary supplement and is supplied as an over-the-counter drug for the treatment of human liver diseases. These are reasons for the low bioavailability of OA which have restricted its wider application. In this study, two OA prodrugs (1,3-cyclic propanyl phosphate esters of OA) were designed and synthesized. The hepatoprotective effects of these prodrugs were evaluated against carbon tetrachloride (CCl4) induced liver injury in mice; the levels of alanine aminotransferase (ALT), lactic dehydrogenase (LDH), and aspartate aminotransferase (AST) were significantly increased, and the level of the hepatic malondialdehyde (MDA) was increased. The metabolism, in vitro, of the prodrugs was studied by incubation in rat liver microsome; the plasma pharmacokinetics and the biodistribution in vivo after intravenous (iv) injection to six rats were investigated, respectively. The prodrugs diminished gradually with time; most of the parent drugs were released within 30 min in vitro, and the presumed mechanism of the in vitro metabolism was confirmed. The plasma-concentration data in vivo was analyzed by a compartmental method: both the prodrugs and the corresponding released parent drugs existed at up to 48 h in rats. The t1/2 improved after intravenous administration in rats compared with direct injection of the parent drugs. All analyte concentrations were highest in the liver, and most of the prodrugs were excreted in feces (>47.11%). Therefore, 1,3-cyclic propanyl phosphate esters of OA can serve as a promising lead candidate for drugs.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ácido Oleanólico/farmacologia , Ácido Oleanólico/farmacocinética , Pró-Fármacos/farmacologia , Pró-Fármacos/farmacocinética , Substâncias Protetoras/farmacologia , Substâncias Protetoras/farmacocinética , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Tetracloreto de Carbono/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/sangue , Fígado/efeitos dos fármacos , Masculino , Malondialdeído/sangue , Ratos , Ratos Wistar , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA