Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37684042

RESUMO

In metazoans, Polo-like kinase (PLK1) controls several mitotic events including nuclear envelope breakdown, centrosome maturation, spindle assembly and progression through mitosis. Here we show that a mutation in the mitochondria-localized protein SPD-3 affects mitotic events by inducing elevated levels of PLK-1 in early Caenorhabditis elegans embryos. SPD-3 mutant embryos contain abnormally positioned mitotic chromosomes, show a delay in anaphase onset and asymmetrically disassemble the nuclear lamina. We found that more PLK-1 accumulated on centrosomes, nuclear envelope, nucleoplasm, and chromatin before NEBD, suggesting that PLK-1 overexpression is responsible for some of the observed mitotic phenotypes. In agreement with this, the chromosome positioning defects of the spd-3(oj35) mutant could be rescued by reducing PLK-1 levels. Our data suggests that the mitochondrial SPD-3 protein affects chromosome positioning and nuclear envelope integrity by up-regulating the endogenous levels of PLK-1 during early embryogenesis in C. elegans This finding suggests a novel link between mitochondria and nuclear envelope dynamics and chromosome positioning by increasing the amount of a key mitotic regulator, PLK-1, providing a novel link between mitochondria and mitosis.


Assuntos
Caenorhabditis elegans , Proteínas Mitocondriais , Animais , Caenorhabditis elegans/genética , Ciclo Celular , Mitose/genética , Núcleo Celular
3.
bioRxiv ; 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36711457

RESUMO

In metazoans, Polo Kinase (Plk1) controls several mitotic events including nuclear envelope breakdown, centrosome maturation and kinetochore assembly. Here we show that mitotic events regulated by Polo Like Kinase (PLK-1) in early C. elegans embryos depend on the mitochondrial-localized protein SPD-3. spd-3 mutant one-cell embryos contain abnormally positioned mitotic chromosomes and prematurely and asymmetrically disassemble the nuclear lamina. Nuclear envelope breakdown (NEBD) in C. elegans requires direct dephosphorylation of lamin by PLK-1. In spd-3 mutants PLK-1 levels are ~6X higher in comparison to control embryos and PLK-1::GFP was highly accumulated at centrosomes, the nuclear envelope, nucleoplasm, and chromosomes prior to NEBD. Partial depletion of plk-1 in spd-3 mutant embryos rescued mitotic chromosome and spindle positioning defects indicating that these phenotypes result from higher PLK-1 levels and thus activity. Our data suggests that the mitochondrial SPD-3 protein controls NEBD and chromosome positioning by regulating the endogenous levels of PLK-1 during early embryogenesis in C. elegans . This finding suggests a novel link between mitochondria and mitotic events by controlling the amount of a key mitotic regulator, PLK-1 and thus may have further implications in the context of cancers or age-related diseases and infertility as it provides a novel link between mitochondria and mitosis.

4.
Elife ; 102021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34114562

RESUMO

Most female meiotic spindles undergo striking morphological changes while transitioning from metaphase to anaphase. The ultra-structure of meiotic spindles, and how changes to this structure correlate with such dramatic spindle rearrangements remains largely unknown. To address this, we applied light microscopy, large-scale electron tomography and mathematical modeling of female meiotic Caenorhabditis elegans spindles. Combining these approaches, we find that meiotic spindles are dynamic arrays of short microtubules that turn over within seconds. The results show that the metaphase to anaphase transition correlates with an increase in microtubule numbers and a decrease in their average length. Detailed analysis of the tomographic data revealed that the microtubule length changes significantly during the metaphase-to-anaphase transition. This effect is most pronounced for microtubules located within 150 nm of the chromosome surface. To understand the mechanisms that drive this transition, we developed a mathematical model for the microtubule length distribution that considers microtubule growth, catastrophe, and severing. Using Bayesian inference to compare model predictions and data, we find that microtubule turn-over is the major driver of the spindle reorganizations. Our data suggest that in metaphase only a minor fraction of microtubules, those closest to the chromosomes, are severed. The large majority of microtubules, which are not in close contact with chromosomes, do not undergo severing. Instead, their length distribution is fully explained by growth and catastrophe. This suggests that the most prominent drivers of spindle rearrangements are changes in nucleation and catastrophe rate. In addition, we provide evidence that microtubule severing is dependent on katanin.


Assuntos
Caenorhabditis elegans/metabolismo , Meiose , Microtúbulos/metabolismo , Oócitos/metabolismo , Fuso Acromático/metabolismo , Anáfase , Animais , Teorema de Bayes , Proteínas de Caenorhabditis elegans/metabolismo , Segregação de Cromossomos , Cromossomos/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Feminino , Katanina/metabolismo , Metáfase , Modelos Teóricos
5.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-881064

RESUMO

Enterovirus 71 (EV71) infection is more likely to cause hand, foot and mouth disease (HFMD) in children, which can lead to neurogenic complications and higher mortality. As a commonly used clinical medicine, Reduning injection (RDN) helps to shorten the symptoms of patients with HFMD and facilitate the early recovery of children. However, the regulatory mechanism of RDN on the HFMD immune system disorder caused by EV71 remains to be discussed. This study collected detailed treatment data of 56 children with HFMD who entered the affiliated Children's Hospital of Nanjing Medical University during 2019. Retrospective analysis of clinical data showed that the symptoms of the RDN treatment group were improved compared with the untreated group. To explore its mechanism, the relevant detection indicators were detected by flow cytometry, enzyme-linked immunosorbent assay and real-time quantitative PCR. It was found that the number and function of innate immune (ILCs) and adaptive immunity (Th1, Th2 and secreted cytokines) were reduced, suggesting that RDN plays a role by regulating cellular immunity. The in vitro differentiation inhibition test further confirmed that RDN affected Th1 differentiation by inhibiting the expression of transcription factors on the basis of Th1 cell differentiation in vitro.

6.
Waste Manag ; 103: 342-351, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31923841

RESUMO

Application of thermophilic composting (TC) is limited due to poor efficiency and long composting period. Hyperthermophilic composting (HTC) could effectively overcome this defect. Here, the transformation of humic acid (HA) in both HTC and TC was characterized and compared to investigate the roles of HTC toward accelerating the formation of HA. In HTC, the highest temperature was 96.6 °C, and the hyperthermophilic and thermophilic phases exceed 18 days. The degree of polymerization (DP) in HTC increased to 1.27 on day 27, while it only increased to 1.15 at the end of TC. The elemental composition of the HA in HTC showed higher O atomic content (36.3%) and lower C/N atomic ratio (6.5) compared with TC. These changes indicated that HTC could significantly accelerate oxidized and polycondensed reactions for HA formation, which resulted in the shortening of composting period to 27 days. The maximum fluorescence intensity (Fmax) of humic-like components were achieved faster in HTC (Fmax = 1649.9) than in TC (Fmax = 1316.9), implying that HTC promoted the polycondensation of small molecular components to form HA with larger molecular weight and higher degree of aromatization. Two-dimensional FTIR correlation spectroscopy (2D-FTIR-COS) analysis demonstrated that HTC prevented the HA precursor from condensing before it was deeply oxidized, and increased the content of small molecules rich in carboxyl moieties. Based on the evolution of the molecular structure of HA, the level of oxidation of HA precursors was a key factor to determine the degree of polymerization and the degree of HA humification.


Assuntos
Compostagem , Archaea , Substâncias Húmicas , Esgotos , Solo
7.
Zootaxa ; 4608(2): zootaxa.4608.2.8, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31717151

RESUMO

Compsiluroides communis Mesnil, C. flavipalpis Mesnil and C. meifengensis sp. nov. are redescribed and described with illustrations. Compsiluroides proboscis Chao Sun is treated as a junior synonym of C. communis. Variations of structures of the male postabdomen of C. communis are illustrated. The genus is newly recorded from Nepal and Taiwan. A key to the three known species of Compsiluroides is provided and their diagnostic characters are illustrated.


Assuntos
Dípteros , Distribuição Animal , Estruturas Animais , Animais , Tamanho Corporal , Masculino , Nepal , Tamanho do Órgão , Taiwan
8.
Zootaxa ; 4638(4): zootaxa.4638.4.8, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31712463

RESUMO

Medinodexia japonica sp. nov. is described from Japan and an adult leaf beetle, Aulacophora nigripennis Motschulsky (Coleoptera: Chrysomelidae), is recorded as its host. A piercing-type ovipositor is one of the characteristics of the genus Medinodexia Townsend, but it is also found in other blondeliine genera. To evaluate the structural differences of the piercing-type ovipositor, the female postabdominal characters were examined within Blondeliini and their phylogenetic implications are briefly discussed. Females of Medinodexia are similar to those of Medina Robineau-Desvoidy for the presence of invaginations on tergite 6 and sternite 6 of the abdomen. Medinodexia exigua Shima and M. orientalis Shima are not treated here, because they are considered to belong to an undescribed genus due to differences in the male and female postabdominal characters distinguishing them from the remaining species of Medinodexia.


Assuntos
Besouros , Dípteros , Animais , Feminino , Japão , Masculino , Filogenia
9.
Sci Rep ; 9(1): 4366, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867451

RESUMO

Systems biology is increasingly being applied in nanosafety research for observing and predicting the biological perturbations inflicted by exposure to nanoparticles (NPs). In the present study, we used a combined transcriptomics and proteomics approach to assess the responses of human monocytic cells to Au-NPs of two different sizes with three different surface functional groups, i.e., alkyl ammonium bromide, alkyl sodium carboxylate, or poly(ethylene glycol) (PEG)-terminated Au-NPs. Cytotoxicity screening using THP-1 cells revealed a pronounced cytotoxicity for the ammonium-terminated Au-NPs, while no cell death was seen after exposure to the carboxylated or PEG-modified Au-NPs. Moreover, Au-NR3+ NPs, but not the Au-COOH NPs, were found to trigger dose-dependent lethality in vivo in the model organism, Caenorhabditis elegans. RNA sequencing combined with mass spectrometry-based proteomics predicted that the ammonium-modified Au-NPs elicited mitochondrial dysfunction. The latter results were validated by using an array of assays to monitor mitochondrial function. Au-NR3+ NPs were localized in mitochondria of THP-1 cells. Moreover, the cationic Au-NPs triggered autophagy in macrophage-like RFP-GFP-LC3 reporter cells, and cell death was aggravated upon inhibition of autophagy. Taken together, these studies have disclosed mitochondria-dependent effects of cationic Au-NPs resulting in the rapid demise of the cells.


Assuntos
Cátions/farmacologia , Ouro/farmacologia , Nanopartículas Metálicas , Mitocôndrias/efeitos dos fármacos , Compostos de Amônio/química , Autofagia/efeitos dos fármacos , Cátions/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fenômenos Químicos , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Ouro/química , Humanos , Redes e Vias Metabólicas , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Fosforilação Oxidativa , Proteoma , Proteômica/métodos , Transcriptoma
10.
J Cell Sci ; 132(5)2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30683797

RESUMO

The Caenorhabditis elegans aminophospholipid translocase TAT-1 maintains phosphatidylserine (PS) asymmetry in the plasma membrane and regulates endocytic transport. Despite these important functions, the structure-function relationship of this protein is poorly understood. Taking advantage of the tat-1 mutations identified by the C. elegans million mutation project, we investigated the effects of 16 single amino acid substitutions on the two functions of the TAT-1 protein. Two substitutions that alter a highly conserved PISL motif in the fourth transmembrane domain and a highly conserved DKTGT phosphorylation motif, respectively, disrupt both functions of TAT-1, leading to a vesicular gut defect and ectopic PS exposure on the cell surface, whereas most other substitutions across the TAT-1 protein, often predicted to be deleterious by bioinformatics programs, do not affect the functions of TAT-1. These results provide in vivo evidence for the importance of the PISL and DKTGT motifs in P4-type ATPases and improve our understanding of the structure-function relationship of TAT-1. Our study also provides an example of how the C. elegans million mutation project helps decipher the structure, functions, and mechanisms of action of important genes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Intestinos/fisiologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , Motivos de Aminoácidos/genética , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Biologia Computacional , Endocitose , Mutação/genética , Fenótipo , Proteínas de Transferência de Fosfolipídeos/genética , Conformação Proteica , Transporte Proteico , Relação Estrutura-Atividade
11.
Nature ; 547(7664): 458-462, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28723894

RESUMO

The radiation-induced bystander effect (RIBE) refers to a unique process in which factors released by irradiated cells or tissues exert effects on other parts of the animal not exposed to radiation, causing genomic instability, stress responses and altered apoptosis or cell proliferation. Although RIBEs have important implications for radioprotection, radiation safety and radiotherapy, the molecular identities of RIBE factors and their mechanisms of action remain poorly understood. Here we use Caenorhabditis elegans as a model in which to study RIBEs, and identify the cysteine protease CPR-4, a homologue of human cathepsin B, as the first RIBE factor in nematodes, to our knowledge. CPR-4 is secreted from animals irradiated with ultraviolet or ionizing gamma rays, and is the major factor in the conditioned medium that leads to the inhibition of cell death and increased embryonic lethality in unirradiated animals. Moreover, CPR-4 causes these effects and stress responses at unexposed sites distal to the irradiated tissue. The activity of CPR-4 is regulated by the p53 homologue CEP-1 in response to radiation, and CPR-4 seems to exert RIBEs by acting through the insulin-like growth factor receptor DAF-2. Our study provides crucial insights into RIBEs, and will facilitate the identification of additional RIBE factors and their mechanisms of action.


Assuntos
Efeito Espectador/efeitos da radiação , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/efeitos da radiação , Catepsina B/metabolismo , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/metabolismo , Cisteína Proteases/metabolismo , Receptor de Insulina/metabolismo , Raios Ultravioleta
12.
Biochem Biophys Res Commun ; 482(3): 491-497, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27919685

RESUMO

Programmed cell clearance is a highly regulated physiological process of elimination of dying cells that occurs rapidly and efficiently in healthy organisms. It thus ensures proper development as well as homeostasis. Recent studies have disclosed a considerable degree of conservation of cell clearance pathways between nematodes and higher organisms. The externalization of the anionic phospholipid phosphatidylserine (PS) has emerged as an important "eat-me" signal for phagocytes and its exposition on apoptotic cells is controlled by phospholipid translocases and scramblases. However, there is mounting evidence that PS exposure occurs not only in apoptosis, but may also be actively expressed on the surface of cells undergoing other forms of cell death including necrosis; PS is also expressed on the surface of engulfing cells. Additionally, PS may act as a "save-me" signal during axonal regeneration. Here we discuss mechanisms of PS exposure and its recognition by phagocytes as well as the consequences of PS signaling in nematodes and in mammals.


Assuntos
Apoptose/fisiologia , Fagócitos/fisiologia , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Morte Celular/fisiologia , Humanos , Modelos Biológicos , Fagocitose/fisiologia , Fosfatidilserinas/metabolismo , Transdução de Sinais/fisiologia
13.
Nat Struct Mol Biol ; 23(11): 958-964, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27723735

RESUMO

Caspases are cysteine proteases with critical roles in apoptosis. The Caenorhabditis elegans caspase CED-3 is activated by autocatalytic cleavage, a process enhanced by CED-4. Here we report that the CED-3 zymogen localizes to the perinuclear region in C. elegans germ cells and that CED-3 autocatalytic cleavage is held in check by C. elegans nuclei and activated by CED-4. The nuclear-pore protein NPP-14 interacts with the CED-3 zymogen prodomain, colocalizes with CED-3 in vivo and inhibits CED-3 autoactivation in vitro. Several missense mutations in the CED-3 prodomain result in stronger association with NPP-14 and decreased CED-3 activation by CED-4 in the presence of nuclei or NPP-14, thus leading to cell-death defects. Those same mutations enhance autocatalytic cleavage of CED-3 in vitro and increase apoptosis in vivo in the absence of npp-14. Our results reveal a critical role of nuclei and nuclear-membrane proteins in regulating the activation and localization of CED-3.


Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Caspases/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/genética , Caspases/análise , Caspases/genética , Ativação Enzimática , Células Germinativas/citologia , Células Germinativas/metabolismo , Mutação de Sentido Incorreto , Complexo de Proteínas Formadoras de Poros Nucleares/análise , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Domínios e Motivos de Interação entre Proteínas
14.
Nat Commun ; 6: 5717, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25564762

RESUMO

The conserved phosphatidylserine receptor (PSR) was first identified as a receptor for phosphatidylserine, an 'eat-me' signal exposed by apoptotic cells. However, several studies suggest that PSR may also act as an arginine demethylase, a lysyl hydroxylase, or an RNA-binding protein through its N-terminal JmjC domain. How PSR might execute drastically different biochemical activities, and whether they are physiologically significant, remain unclear. Here we report that a lysine-rich motif in the extracellular domain of PSR-1, the Caenorhabditis elegans PSR, mediates specific phosphatidylserine binding in vitro and clearance of apoptotic cells in vivo. This motif also mediates phosphatidylserine-induced oligomerization of PSR-1, suggesting a mechanism by which PSR-1 activates phagocytosis. Mutations in the phosphatidylserine-binding motif, but not in its Fe(II) binding site critical for the JmjC activity, abolish PSR-1 phagocytic function. Moreover, PSR-1 enriches and clusters around apoptotic cells during apoptosis. These results establish that PSR-1 is a conserved, phosphatidylserine-recognizing phagocyte receptor.


Assuntos
Motivos de Aminoácidos/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Modelos Moleculares , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Apoptose , Sequência de Bases , Western Blotting , Proteínas de Caenorhabditis elegans/genética , Clonagem Molecular , Primers do DNA/genética , Ensaio de Imunoadsorção Enzimática , Fluorescência , Células Germinativas , Proteínas de Fluorescência Verde , Imunoprecipitação , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Receptores de Superfície Celular/genética , Análise de Sequência de DNA , Imagem com Lapso de Tempo , Raios Ultravioleta
15.
Opt Express ; 22(7): 8376-82, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718211

RESUMO

This paper presents a new method for fabricating arrayed metallic nano-structures with sub-micrometer line-widths over large patterning area sizes. It utilizes a soft mold containing arrayed surface micro-pyramids. A carbon-black photo-resist (PR) coating method is developed which can convert the soft mold into a photo-mask. This three-dimensional photo-mask is then applied for photolithographic ultraviolet (UV) patterning. In conjunction with standard metal lift-off process, arrayed metallic nano-structures are formed on glass substrates. A finite element simulation software is used to analyze the underlying mechanism of UV patterning using this new type of 3D photo-mask. The localized surface plasma resonance (LSPR) effects of the fabricated nano-structures are investigated both experimentally and theoretically. Good agreements are observed.

16.
Nat Commun ; 4: 2726, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24225442

RESUMO

During apoptosis, phosphatidylserine (PS), normally restricted to the inner leaflet of the plasma membrane, is exposed on the surface of apoptotic cells and serves as an 'eat-me' signal to trigger phagocytosis. It is poorly understood how PS exposure is activated in apoptotic cells. Here we report that CED-8, a Caenorhabditis elegans protein implicated in controlling the kinetics of apoptosis and a homologue of the XK family proteins, is a substrate of the CED-3 caspase. Cleavage of CED-8 by CED-3 activates its proapoptotic function and generates a carboxyl-terminal cleavage product, acCED-8, that promotes PS externalization in apoptotic cells and can induce ectopic PS exposure in living cells. Consistent with its role in promoting PS externalization in apoptotic cells, ced-8 is important for cell corpse engulfment in C. elegans. Our finding identifies a crucial link between caspase activation and PS externalization, which triggers phagocytosis of apoptotic cells.


Assuntos
Apoptose , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Caspases/metabolismo , Proteínas de Membrana/metabolismo , Fosfatidilserinas/metabolismo , Alelos , Animais , Animais Geneticamente Modificados , Membrana Celular/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico/metabolismo , Mutação , Fagocitose
17.
Biosci Rep ; 33(5)2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23883094

RESUMO

Androgen plays an important role in the pathogenesis of PCa (prostate cancer). Previously, we identified GNMT (glycine N-methyltransferase) as a tumour susceptibility gene and characterized its promoter region. Besides, its enzymatic product-sarcosine has been recognized as a marker for prognosis of PCa. The goals of this study were to determine whether GNMT is regulated by androgen and to map its AREs (androgen response elements). Real-time PCR analyses showed that R1881, a synthetic AR (androgen receptor) agonist induced GNMT expression in AR-positive LNCaP cells, but not in AR-negative DU145 cells. In silico prediction showed that there are four putative AREs in GNMT-ARE1, ARE2 and ARE3 are located in the intron 1 and ARE4 is in the intron 2. Consensus ARE motif deduced from published AREs was used to identify the fifth ARE-ARE5 in the coding region of exon 1. Luciferase reporter assay found that only ARE5 mediated the transcriptional activation of R1881. ARE3 overlaps with a YY1 [Yin and Yang 1 (motif (CaCCATGTT, +1118/+1126)] that was further confirmed by antibody supershift and ChIP (chromatin immunoprecipitation) assays. EMSA (electrophoretic mobility shift assay) and ChIP assay confirmed that AR interacts with ARE5 in vitro and in vivo. In summary, GNMT is an AR-targeted gene with its functional ARE located at +19/+33 of the first exon. These results are valuable for the study of the influence of androgen on the gene expression of GNMT especially in the pathogenesis of cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glicina N-Metiltransferase/genética , Elementos de Resposta , Antagonistas de Receptores de Andrógenos/farmacologia , Anilidas/farmacologia , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Éxons , Humanos , Masculino , Metribolona/farmacologia , Nitrilas/farmacologia , Fases de Leitura Aberta , Neoplasias da Próstata , Ligação Proteica , Receptores Androgênicos/metabolismo , Análise de Sequência de DNA , Congêneres da Testosterona/farmacologia , Compostos de Tosil/farmacologia , Transcrição Gênica
18.
Atherosclerosis ; 228(2): 406-12, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23623010

RESUMO

OBJECTIVE: Previous investigations have revealed an association between the ABO locus/blood group and total cholesterol and inflammatory biomarker levels. We aimed to test the statistical association of ABO locus variants with lipid profiles and levels of thirteen inflammatory markers in a Taiwanese population. METHODS AND RESULTS: A sample population of 617 Taiwanese subjects was enrolled. Five ABO gene region polymorphisms were selected and genotyped. After adjusting for clinical covariates and inflammatory marker levels, the genetic-inferred ABO blood group genotypes were associated with sE-selectin level (P = 3.5 × 10(-36)). Significantly higher total and low-density lipoprotein cholesterol (LDL-C) levels were noted in individuals with blood group A (P = 7.2 × 10(-4) and P = 7.3 × 10(-4), respectively). Interestingly, after adjusting for sE-selectin level, significantly lower high-density lipoprotein cholesterol (HDL-C) level as well as higher triglyceride (TG) level and ratio of triglyceride to HDL-C (TG/HDL-C ratio) were noted in individuals with blood group A comparing to non-A individuals (P = 0.009, P = 0.004 and P = 0.001, respectively); these associations were also observed in the group A male subjects (P = 0.027, P = 0.001, and P = 0.002, respectively). Mediation analysis further revealed a suppression effect of sE-selectin level on the association between genetic-inferred ABO blood group genotypes and TG/HDL-C ratio in total participants (P = 1.18 × 10(-6)) and in males (P = 5.99 × 10(-5)). CONCLUSION: Genetic variants at the ABO locus independently affect sE-selectin level in Taiwanese subjects, while the association of ABO locus variants with TG/HDL-C ratio is suppressed by sE-selectin level in Taiwanese males. These results provided further evidence for the mechanism in the association of ABO blood groups with atherosclerotic cardiovascular diseases.


Assuntos
Sistema ABO de Grupos Sanguíneos/genética , Aterosclerose/sangue , Aterosclerose/genética , HDL-Colesterol/sangue , Selectina E/sangue , Mediadores da Inflamação/sangue , Polimorfismo Genético , Triglicerídeos/sangue , Adulto , Povo Asiático/genética , Aterosclerose/epidemiologia , Aterosclerose/imunologia , Biomarcadores/sangue , Estudos Transversais , Regulação para Baixo , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Medição de Risco , Fatores de Risco , Fatores Sexuais , Taiwan/epidemiologia
19.
Curr Biol ; 22(14): 1267-75, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22727702

RESUMO

BACKGROUND: Phosphatidylserine (PS) normally confined to the cytoplasmic leaflet of plasma membrane (PM) is externalized to the exoplasmic leaflet (exPS) during apoptosis, where it serves as an "eat-me" signal to phagocytes. In addition, some living cells such as macrophages also express exPS. RESULTS: A secreted Annexin V (sAnxV::GFP) PS sensor reveals that exPS appears early on apoptotic cells in C. elegans embryos and decreases in older or unengulfed apoptotic cells. This decrease in exPS expression is blocked by loss of CED-7, an ATP binding cassette (ABC) transporter, or TTR-52, a secreted PS binding protein. Phagocytic cells also express exPS, which is dependent on the activity of CED-7, TTR-52, and TTR-52-interacting phagocyte receptor CED-1. Interestingly, a secreted lactadherin PS sensor (sGFP::Lact(C1C2)) labels apoptotic cells but not phagocytes, prevents sAnxV::GFP from labeling phagocytes, and compromises phagocytosis. Immuno-electron micrographs of embryos expressing sAnxV::GFP or sGFP::Lact(C1C2) reveal the presence of extracellular PS-containing vesicles between the apoptotic cell and neighboring cells, which are absent or greatly reduced in the ced-7 and ttr-52 mutants, respectively, indicating that CED-7 and TTR-52 promote the generation of extracellular PS vesicles. Loss of the tat-1 gene, which maintains PS asymmetry in the PM, restores phagocyte exPS expression in ced-1, ced-7, and ttr-52 mutants and partially rescues their engulfment defects. CONCLUSIONS: CED-7 and TTR-52 may promote the efflux of PS from apoptotic cells through the generation of extracellular PS vesicles, which lead to exPS expression on phagocytes via TTR-52 and CED-1 to facilitate cell corpse clearance.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Apoptose , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Microscopia Imunoeletrônica/métodos , Fosfatidilserinas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Anexina A5/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Embrião não Mamífero/metabolismo , Proteínas de Membrana/genética , Fagócitos/metabolismo
20.
Opt Express ; 20(7): 7445-53, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22453424

RESUMO

The purpose of this study is to reduce the glass substrate reflectivity over a wide spectral range (400-1200 nm) without having high reflectivity in the near-infrared region. After making porous SiO2/MgF2 double-layer antireflection (DLAR) thin film structure, the superstrate-type silicon-based tandem cells are added. In comparison to having only silicon-based tandem solar cells, the short-circuit current density has improved by 6.82% when porous SiO2/MgF2 DLAR thin film is applied to silicon-based tandem solar cells. This study has demonstrated that porous SiO2/MgF2 DLAR thin film structure provides antireflection properties over a broad spectral range (400-1200 nm) without having high reflectivity at near-infrared wavelengths.


Assuntos
Fluoretos/química , Lentes , Compostos de Magnésio/química , Dióxido de Silício/química , Silício/química , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Porosidade , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...