Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3043, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589394

RESUMO

Carbon quantum dots are emerging as promising nanomaterials for next-generation displays. The elaborate structural design is crucial for achieving thermally activated delayed fluorescence, particularly for improving external quantum efficiency of electroluminescent light-emitting diodes. Here, we report the synthesis of onion-like multicolor thermally activated delayed fluorescence carbon quantum dots with quantum yields of 42.3-61.0%. Structural, spectroscopic characterization and computational studies reveal that onion-like structures assembled from monomer carbon quantum dots of different sizes account for the decreased singlet-triplet energy gap, thereby achieving efficient multicolor thermally activated delayed fluorescence. The devices exhibit maximum luminances of 3785-7550 cd m-2 and maximum external quantum efficiency of 6.0-9.9%. Importantly, owing to the weak van der Waals interactions and adequate solution processability, flexible devices with a maximum luminance of 2554 cd m-2 are realized. These findings facilitate the development of high-performance carbon quantum dots-based electroluminescent light-emitting diodes that are promising for practical applications.

2.
Adv Mater ; : e2401493, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38422537

RESUMO

The development of bright and long-lived aqueous room-temperature phosphorescent (RTP) materials holds paramount importance in broadening the application scope of RTP material system. However, the conventional RTP materials usually exhibit low efficiency and short lifetime in aqueous solution. Herein, an in situ host-guest strategy is proposed to achieve cyanuric acid (CA)-derived phosphorescent carbon nitrogen dots (CNDs) composite (CNDs@CA) that demonstrates a significant enhancement of both quantum yield (QY) and lifetime mediated by water. Detailed investigations reveal that the robust hydrogen bonding networks between CNDs@CA and water effectively stabilize triplet excitons and suppress nonradiative decays, as well as facilitate efficient energy transfer from CA to CNDs, thereby prolonging the lifetime and enhancing the efficiency of RTP. The phosphorescent QY and lifetime of CNDs@CA can be increased to 26.89% (3.9-fold increase) and 951.25 ms (5.5-fold increase), respectively, with the incorporation of 50 wt% water under ambient conditions. Even in fully aqueous environments (with up to 400 wt% water added), CNDs@CA exhibits persistent water-boosted RTP properties, demonstrating exceptional stability. The robust water-boosted RTP property of CNDs@CA in aqueous solutions presents significant potential for high signal-to-noise ratio afterglow bioimaging as well as advanced information encryption.

3.
Small ; 20(1): e2304958, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649163

RESUMO

Room temperature phosphorescence (RTP) has emerged as an interesting but rare phenomenon with multiple potential applications in anti-counterfeiting, optoelectronic devices, and biosensing. Nevertheless, the pursuit of ultralong lifetimes of RTP under visible light excitation presents a significant challenge. Here, new phosphorescent materials that can be excited by visible light with record-long lifetimes are demonstrated, realized through embedding nitrogen doped carbon dots (N-CDs) into a poly(vinyl alcohol) (PVA) film. The RTP lifetime of the N-CDs@PVA film is remarkably extended to 2.1 s excited by 420 nm, representing the highest recorded value for visible light-excited phosphorescent materials. Theoretical and experimental studies reveal that the robust hydrogen bonding interactions can effectively reduce the non-radiative decay rate and radiative transition rate of triplet excitons, thus dramatically prolong the phosphorescence lifetime. Notably, the RTP emission of N-CDs@PVA film can also be activated by easily accessible low-power white-light-emitting diode. More significantly, the practical applications of the N-CDs@PVA film in state-of-the-art anti-counterfeiting security and optical information storage domains are further demonstrated. This research offers exciting opportunities for utilizing visible light-activated ultralong-lived RTP systems in a wide range of promising applications.

4.
Mater Horiz ; 11(1): 102-112, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37823244

RESUMO

The significant features of carbon dots (CDs), such as bright and tunable photoluminescence, high thermal stability, and low toxicity, endow them with tremendous potential for application in next generation optoelectronics. Despite great progress achieved in the design of high-performance CDs so far, the practical applications in solid-state lighting and displays have been retarded by the aggregation-caused quenching (ACQ) effect ascribed to direct π-π interactions. This review provides a comprehensive overview of the recent progress made in solid-state CD emitters, including their synthesis, optical properties and applications in light-emitting diodes (LEDs). Their triplet-excited-state-involved properties, as well as their recent advances in phosphor-converted LEDs and electroluminescent LEDs, are mainly reviewed here. Finally, the prospects and challenges of solid-state CD-based LEDs are discussed with an eye on future development. We hope that this review will provide critical insights to inspire new exciting discoveries on solid-state CDs from both fundamental and practical standpoints so that the realization of their potential in optoelectronic areas can be facilitated.

7.
Adv Mater ; 35(45): e2303938, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37464982

RESUMO

Achieving high-performance perovskite light-emitting diodes (PeLEDs) with pure-red electroluminescence for practical applications remains a critical challenge because of the problematic luminescence property and spectral instability of existing emitters. Herein, high-efficiency Rec. 2020 pure-red PeLEDs, simultaneously exhibiting exceptional brightness and spectral stability, based on CsPb(Br/I)3 perovskite nanocrystals (NCs) capping with aromatic amino acid ligands featuring cation-π interactions, are reported. It is proven that strong cation-π interactions between the PbI6 -octahedra of perovskite units and the electron-rich indole ring of tryptophan (TRP) molecules not only chemically polish the imperfect surface sites, but also markedly increase the binding affinity of the ligand molecules, leading to high photoluminescence quantum yields and greatly enhanced spectral stability of the CsPb(Br/I)3 NCs. Moreover, the incorporation of small-size aromatic TRP ligands ensures superior charge-transport properties of the assembled emissive layers. The resultant devices emitting at around 635 nm demonstrate a champion external quantum efficiency of 22.8%, a max luminance of 12 910 cd m-2 , and outstanding spectral stability, representing one of the best-performing Rec. 2020 pure-red PeLEDs achieved so far.

8.
Adv Mater ; 35(36): e2302275, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37228040

RESUMO

Deep-red light-emitting diodes (DR-LEDs, >660 nm) with high color-purity and narrow-bandwidth emission are promising for full-color displays and solid-state lighting applications. Currently, the DR-LEDs are mainly based on conventional emitters such as organic materials and heavy-metal based quantum dots (QDs) and perovskites. However, the organic materials always suffer from the complicated synthesis, inferior color purity with full-width at half-maximum (FWHM) more than 40 nm, and the QDs and perovskites still suffer from serious problems related to toxicity. Herein, this work reports the synthesis of efficient and high color-purity deep-red carbon dots (CDs) with a record narrow FWHM of 21 nm and a high quantum yield of more than 50% from readily available green plants. Moreover, an exciplex host is further established using a polymer and small molecular blend, which has been shown to be an efficient strategy for producing high color-purity monochrome emission from deep-red CDs via Förster energy transfer (FET). The deep-red CD-LEDs display high color-purity with Commission Internationale de l'Eclairage (CIE) coordinates of (0.692, 0.307). To the best of the knowledge, this is the first report of high color-purity CD-LEDs in the deep-red region, opening the door for the application of CDs in the development of high-resolution light-emitting display technologies.

9.
Angew Chem Int Ed Engl ; 62(20): e202218568, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36924197

RESUMO

Carbon quantum dots (CQDs) feature bright and tunable photoluminescence, solution processability, and low toxicity, showing great potential in optoelectronics. However, the large-scale synthesis of CQDs with near-unity photoluminescence quantum yield (PLQY) has not been achieved so far. In this study, we perform radical-assisted synthesis of hexagon-shaped CQDs (H-CQDs) delivering near-unity PLQY (96 %). Experimental and theoretical analyses revealed that the large vertically oriented transition dipole moment of H-CQDs originating from high symmetry results in nearly 100 % PLQY. The H-CQDs also exhibited a high electron mobility of up to 0.07 cm2  V-1 s-1 . These properties enable the H-CQD-based light-emitting diodes with a high external quantum efficiency of 4.6 % and a record maximum brightness of over 11 000 cd m-2 . This study represents a significant advance that CQDs-based electroluminescent device can be utilized for potential display and lighting applications.

10.
Adv Mater ; 35(44): e2210699, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36959751

RESUMO

Carbon dots (CDs), as emerging carbon nanomaterials, have been regarded as promising alternatives for electroluminescent light-emitting diodes (LEDs) owing to their distinct characteristics, such as low toxicity, tuneable photoluminescence, and good photostability. In the last few years, despite remarkable progress achieved in CD-based LEDs, their device performance is still inferior to that of well-developed organic, heavy-metal-based QDs, and perovskite LEDs. To better exploit LED applications and boost device performance, in this review, a comprehensive overview of currently explored CDs is presented, focusing on their key optical characteristics, which are closely related to the structural design of CDs from their carbon core to surface modifications, and to macroscopic structural engineering, including the embedding of CDs in the matrix or spatial arrangement of CDs. The design of CD-based LEDs for display and lighting applications based on the fluorescence, phosphorescence, and delayed fluorescence emission of CDs is also highlighted. Finally, it is concluded with a discussion regarding the key challenges and plausible prospects in this field. It is hoped that this review inspires more extensive research on CDs from a new perspective and promotes practical applications of CD-based LEDs in multiple directions of current and future research.

11.
Adv Mater ; 35(8): e2209002, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36493461

RESUMO

Pure-red perovskite LEDs (PeLEDs) based on CsPb(Br/I)3 nanocrystals (NCs) usually suffer from a compromise in emission efficiency and spectral stability on account of the surface halide vacancies-induced nonradiative recombination loss, halide phase segregation, and self-doping effect. Herein, a "halide-equivalent" anion of benzenesulfonate (BS- ) is introduced into CsPb(Br/I)3 NCs as multifunctional additive to simultaneously address the above challenging issues. Joint experiment-theory characterizations reveal that the BS- can not only passivate the uncoordinated Pb2+ -related defects at the surface of NCs, but also increase the formation energy of halide vacancies. Moreover, because of the strong electron-withdrawing property of sulfonate group, electrons are expected to transfer from the CsPb(Br/I)3 NC to BS- for reducing the self-doping effect and altering the n-type behavior of CsPb(Br/I)3 NCs to near ambipolarity. Eventually, synergistic boost in device performance is achieved for pure-red PeLEDs with CIE coordinates of (0.70, 0.30) and a champion external quantum efficiency of 23.5%, which is one of the best value among the ever-reported red PeLEDs approaching to the Rec. 2020 red primary color. Moreover, the BS- -modified PeLED exhibits negligible wavelength shift under different operating voltages. This strategy paves an efficient way for improving the efficiency and stability of pure-red PeLEDs.

12.
Sci Bull (Beijing) ; 67(15): 1535-1538, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546278

Assuntos
Temperatura
14.
Nature ; 599(7886): 594-598, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34819678

RESUMO

Light-emitting diodes (LEDs) based on perovskite quantum dots have shown external quantum efficiencies (EQEs) of over 23% and narrowband emission, but suffer from limited operating stability1. Reduced-dimensional perovskites (RDPs) consisting of quantum wells (QWs) separated by organic intercalating cations show high exciton binding energies and have the potential to increase the stability and the photoluminescence quantum yield2,3. However, until now, RDP-based LEDs have exhibited lower EQEs and inferior colour purities4-6. We posit that the presence of variably confined QWs may contribute to non-radiative recombination losses and broadened emission. Here we report bright RDPs with a more monodispersed QW thickness distribution, achieved through the use of a bifunctional molecular additive that simultaneously controls the RDP polydispersity while passivating the perovskite QW surfaces. We synthesize a fluorinated triphenylphosphine oxide additive that hydrogen bonds with the organic cations, controlling their diffusion during RDP film deposition and suppressing the formation of low-thickness QWs. The phosphine oxide moiety passivates the perovskite grain boundaries via coordination bonding with unsaturated sites, which suppresses defect formation. This results in compact, smooth and uniform RDP thin films with narrowband emission and high photoluminescence quantum yield. This enables LEDs with an EQE of 25.6% with an average of 22.1 ±1.2% over 40 devices, and an operating half-life of two hours at an initial luminance of 7,200 candela per metre squared, indicating tenfold-enhanced operating stability relative to the best-known perovskite LEDs with an EQE exceeding 20%1,4-6.

15.
J Am Chem Soc ; 143(38): 15606-15615, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34542273

RESUMO

Light-emitting diodes (LEDs) based on metal halide perovskite quantum dots (QDs) have achieved impressive external quantum efficiencies; however, the lack of surface protection of QDs, combined with efficiency droop, decreases device operating lifetime at brightnesses of interest. The epitaxial incorporation of QDs within a semiconducting shell provides surface passivation and exciton confinement. Achieving this goal in the case of perovskite QDs remains an unsolved challenge in view of the materials' chemical instability. Here, we report perovskite QDs that remain stable in a thin layer of precursor solution of perovskite, and we use strained QDs as nucleation centers to drive the homogeneous crystallization of a perovskite matrix. Type-I band alignment ensures that the QDs are charge acceptors and radiative emitters. The new materials show suppressed Auger bi-excition recombination and bright luminescence at high excitation (600 W cm-2), whereas control materials exhibit severe bleaching. Primary red LEDs based on the new materials show an external quantum efficiency of 18%, and these retain high performance to brightnesses exceeding 4700 cd m-2. The new materials enable LEDs having an operating half-life of 2400 h at an initial luminance of 100 cd m-2, representing a 100-fold enhancement relative to the best primary red perovskite LEDs.

16.
Adv Sci (Weinh) ; 8(20): e2101125, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34449133

RESUMO

Perovskite quantum dots (QDs) are of interest for solution-processed lasers; however, their short Auger lifetime has limited lasing operation principally to the femtosecond temporal regime the photoexcitation levels to achieve optical gain threshold are up to two orders of magnitude higher in the nanosecond regime than in the femtosecond. Here the authors report QD superlattices in which the gain medium facilitates excitonic delocalization to decrease Auger recombination and in which the macroscopic dimensions of the structures provide the optical feedback required for lasing. The authors develope a self-assembly strategy that relies on sodiumd-an assembly director that passivates the surface of the QDs and induces self-assembly to form ordered three-dimensional cubic structures. A density functional theory model that accounts for the attraction forces between QDs allows to explain self-assembly and superlattice formation. Compared to conventional organic-ligand-passivated QDs, sodium enables higher attractive forces, ultimately leading to the formation of micron-length scale structures and the optical faceting required for feedback. Simultaneously, the decreased inter-dot distance enabled by the new ligand enhances exciton delocalization among QDs, as demonstrated by the dynamically red-shifted photoluminescence. These structures function as the lasing cavity and the gain medium, enabling nanosecond-sustained lasing with a threshold of 25 µJ cm-2 .

17.
Angew Chem Int Ed Engl ; 60(29): 16164-16170, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-33982380

RESUMO

The all-inorganic nature of CsPbI3 perovskites allows to enhance stability in perovskite devices. Research efforts have led to improved stability of the black phase in CsPbI3 films; however, these strategies-including strain and doping-are based on organic-ligand-capped perovskites, which prevent perovskites from forming the close-packed quantum dot (QD) solids necessary to achieve high charge and thermal transport. We developed an inorganic ligand exchange that leads to CsPbI3 QD films with superior phase stability and increased thermal transport. The atomic-ligand-exchanged QD films, once mechanically coupled, exhibit improved phase stability, and we link this to distributing strain across the film. Operando measurements of the temperature of the LEDs indicate that KI-exchanged QD films exhibit increased thermal transport compared to controls that rely on organic ligands. The LEDs exhibit a maximum EQE of 23 % with an electroluminescence emission centered at 640 nm (FWHM: ≈31 nm). These red LEDs provide an operating half-lifetime of 10 h (luminance of 200 cd m-2 ) and an operating stability that is 6× higher than that of control devices.

18.
J Phys Chem Lett ; 12(9): 2437-2443, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33661637

RESUMO

CsPbI3 perovskite nanocrystals (NCs) have recently emerged as promising materials for optoelectronic devices because of their superior properties. However, the poor stability of the CsPbI3 NCs induced by easy ligand desorption represents a key issue limiting their practical applications. Herein, we report stable and highly luminescent black-phase CsPbI3 NCs passivated by novel ligands of sodium dodecyl sulfate (SDS). Theoretical calculation results reveal a stronger adsorption energy of SDS molecules at the CsPbI3 surface than that of commonly used oleic acid. As a result, the defect formation caused by the ligand loss during the purification process is greatly suppressed. The optimized SDS-CsPbI3 NCs exhibit significantly reduced surface defects, much enhanced stability, and superior photoluminescence efficiency. The red perovskite light-emitting diodes based on the SDS-CsPbI3 NCs demonstrate an external quantum efficiency of 8.4%, which shows a 4-fold improvement compared to the devices based on the oleic acid-modified CsPbI3 NCs.

19.
Sci Adv ; 6(42)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33055155

RESUMO

It remains a central challenge to the information display community to develop red light-emitting diodes (LEDs) that meet demanding color coordinate requirements for wide color gamut displays. Here, we report high-efficiency, lead-free (PEA)2SnI4 perovskite LEDs (PeLEDs) with color coordinates (0.708, 0.292) that fulfill the Rec. 2100 specification for red emitters. Using valeric acid (VA)-which we show to be strongly coordinated to Sn2+-we slow the crystallization rate of the perovskite, improving the film morphology. The incorporation of VA also protects tin from undesired oxidation during the film-forming process. The improved films and the reduced Sn4+ content enable PeLEDs with an external quantum efficiency of 5% and an operating half-life exceeding 15 hours at an initial brightness of 20 cd/m2 This work illustrates the potential of Cd- and Pb-free PeLEDs for display technology.

20.
Nat Commun ; 11(1): 3674, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699223

RESUMO

Metal halide perovskites have emerged as promising candidates for solution-processed blue light-emitting diodes (LEDs). However, halide phase segregation - and the resultant spectral shift - at LED operating voltages hinders their application. Here we report true-blue LEDs employing quasi-two-dimensional cesium lead bromide with a narrow size distribution of quantum wells, achieved through the incorporation of a chelating additive. Ultrafast transient absorption spectroscopy measurements reveal that the chelating agent helps to control the quantum well thickness distribution. Density functional theory calculations show that the chelating molecule destabilizes the lead species on the quantum well surface and that this in turn suppresses the growth of thicker quantum wells. Treatment with γ-aminobutyric acid passivates electronic traps and enables films to withstand 100 °C for 24 h without changes to their emission spectrum. LEDs incorporating γ-aminobutyric acid-treated perovskites exhibit blue emission with Commission Internationale de l'Éclairage coordinates of (0.12, 0.14) at an external quantum efficiency of 6.3%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...