Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Cancer Biomark ; 20(4): 443-452, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28869437

RESUMO

BACKGROUND: Although O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation status is an important marker for glioblastoma multiforme (GBM), there is considerable variability in the clinical outcome of patients with similar methylation profles. OBJECTIVE: We examined whether a MicroRNA (miRNA) signature can be identified for predicting clinical outcomes and helping in treatment decisions. METHODS: The differentially expressed miRNAs were evaluated in 6 pairs of short- (⩽ 450 days) and long-term survivors (> 450 days) by using microarray. Real time quantitative PCR (qRT-PCR) was applied to further verify screened miRNAs with a greater number of samples (n= 48). Meanwhile, functional interpretation of miRNA profile was carried out based on miRNA-target databases. In addition, MGMT promoter methylation status was tested by means of pyrosequencing (PSQ) testing. RESULTS: Six miRNAs were upregulated in the long-term survival group (fold change ⩾ 2.0, P< 0.05). The further verification by qRT-PCR indicated that the increase in let-7g-5p, miR-139-5p, miR-17-5p and miR-9-3p level in long-term survivors was statistically significant. Kaplan-Meier survival analysis showed that high expression of a prognostic 4-miRNA signature was significantly associated with good patient survival (p= 0.0012). The signature regulated signaling pathways including Calcium, MAPK, ErbB, mTOR and cell cycle involved in carcinogenesis from glial progenitor cell to primary GBM. CONCLUSIONS: The 4-miRNA signature was identified as an independent prognostic biomarker that identified patients who have a favorable outcome.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Glioblastoma/genética , Glioblastoma/mortalidade , MicroRNAs/genética , Adulto , Idoso , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Metilação de DNA , Metilases de Modificação do DNA/genética , Feminino , Perfilação da Expressão Gênica , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Estudos Retrospectivos
3.
Plant Dis ; 98(11): 1586, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30699817

RESUMO

Kiwifruit (Actinidia) is a common fruit cultivated in many countries. Actinidia deliciosa and A. chinensis are two commercially important kiwifruit species. Over 70,000 ha are grown annually in China. In 2012, a leaf spot disease of A. chinensis was observed in several orchards in Leye County (106°34' E, 24°47' N), Guangxi Zhuang Autonomous Region, China. The disease mainly damaged the leaves during the fruit development stage through to the maturity stage. Initially reddish-brown small lesions appeared on the leaves; later, typical symptoms were tan to taupe lesions surrounded by purple brown margins, nearly circular to irregular, 2 to 10 × 2.2 to 15.5 mm in diameter. Some lesions exhibited a concentric pattern. The lesions eventually coalesced, causing extensive leaf necrosis and defoliation. The fungus that sporulated from lesions had the following morphological characteristics: light brown conidiophores with slightly swollen apexes, light brown conidia formed singly or in acropetal chains, straight or curved, cylindrical to oblavate, 52.9 to 240.5 µm long (avg. 138.9 µm) and 5.3 to 13.6 µm wide (avg. 8.4 µm), 5 to 12 distoseptate, with a flat, darkened, and thickened hilum. These morphological characteristics corresponded with that of Corynespora cassiicola (Berk. & Curt.) Wei (1). To isolate the pathogen of the disease, small pieces of symptomatic foliar tissues, including young lesions, typical older lesions, and atypical older lesions with concentric pattern were surface sterilized with 75% ethanol for 30 to 60 s, disinfected in 0.1% HgCl2 for 1 min followed by washing with sterile water, plated on PDA, and incubated at 28°C for 7 to 10 days. Gray to dark gray colonies and conidia of C. cassiicola were observed. To validate the identity of the fungus, the sequence of the ITS region of one of the purified strains, LYCc-1, was determined. DNA was extracted from the isolate that was grown on PDA at 28°C for 4 days, and the ITS region was amplified using the universal primer pair ITS4/ITS5 (2). The double strand consensus sequence was submitted to GenBank (KJ747095) and had 99% nt identity with published sequences of C. cassiicola in GenBank (JN853778, FJ852574, and FJ852587). Pathogenicity tests were carried out on detached leaves in petri dishes in an incubator at 28°C and on whole plants in a glasshouse at 25 ± 3°C. The isolations did not produce enough conidia in pure culture, so mycelial discs were used in pathogenicity tests. For both assays, 60-day-old healthy kiwifruit leaves were inoculated with a 5-mm mycelial disc obtained from the periphery of a 5-day-old C. cassiicola strain (LYCc-1) grown on PDA. The PDA discs were placed on the leaf surface with their mycelial surface down and secured with sterile wet cotton. Controls consisted of leaves that were inoculated with sterile PDA discs. For the detached leaf assay, the leaves were placed on filter paper reaching water saturation in petri dishes, and for the whole plant assays the inoculated leaves were kept moist with intermittent water sprays for 48 h. Four leaves of each plant were inoculated with the isolate in both assays, and experiment was repeated twice. Eight inoculated leaves of the detached leaf assay all showed the first water soaked lesions 36 h after inoculation, followed by extensive leaf rot 72 h after inoculation, and yielded abundant conidia of C. cassiicola. Six out of eight leaves inoculated on whole plants showed the first lesions 5 days after inoculation, whereas control leaves remained healthy. Only C. cassiicola was re-isolated from the lesions in both assays, fulfilling Koch's postulates. This is the first report of leaf spot caused by C. cassiicola on kiwifruit in China. References: (1) M. B. Ellis. Dematiaceous Hyphomycetes. CMI, Kew, Surrey, UK, 1971. (2) T. J. White et al. In: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990.

4.
Chin Med J (Engl) ; 107(5): 368-70, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-7924579

RESUMO

The vascular architecture of bone giant cell tumor was observed histologically with resin cast technique and scanning electron microscopy. Three types of capillaries were noted in the tumor tissue: extruding club-like capillary in the outer zone of the tumor; sinusoid capillary running disorderly in the intermediate zone; cecum capillary in the central zone. The pattern of vascular structure was believed to be correlated with tumor growth.


Assuntos
Neoplasias Ósseas/irrigação sanguínea , Tumor de Células Gigantes do Osso/irrigação sanguínea , Neoplasias Ósseas/ultraestrutura , Capilares/ultraestrutura , Molde por Corrosão , Tumor de Células Gigantes do Osso/ultraestrutura , Humanos , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...