Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 41(6): 2852-2860, 2020 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608802

RESUMO

The availability of carbon (C), nitrogen (N), and other substrates in soil determines the growth and metabolism of microorganisms and affects the activity of extracellular enzymes. To study the activities of ß-1,4-glucosidase (BG) and ß-1,4-N-acetylglucosaminidase (NAG) in response to C and N availability, samples that underwent four treatments-non-fertilization (CK), chemical fertilizer (NPK), combination of organic manure and chemical fertilizer (OM), and mixture of straw and chemical fertilizer (ST)-were collected from long-term fertilization paddy soil and incubated for 0, 4, 8, and 12 months to obtain soil with different C and N availability gradients. The results showed that the dissolved organic carbon(DOC) content of OM and ST treatment samples was 2-3 times higher than that of CK and NPK treatment samples. With the increase of DOC and ammonium (NH4+-N) contents, the activities of BG and NAG and the contents of microbial biomass C (MBC) and N (MBN) showed no increase during incubation within each treatment. Fertilization treatments, incubation time, and their interaction are crucial factors varying the contents of DOC, NH4+-N, MBC, and MBN among different fertilization treatments (P<0.01). There was a positive correlation between MBC/MBN and DOC/NH4+-N of OM treatment (P<0.05) and a negative relationship between ln(BG)/ln(NAG) and DOC/NH4+-N of ST treatment (P<0.01), indicating that the availability of substrates played a key role in the potential activity of extracellular enzymes in paddy soil, and the carbon-nitrogen ratio of microbial biomass was controlled by the C/N stoichiometry of substrates in soil. The results have a certain guiding significance for further study on the variation of extracellular enzyme activity in paddy soil, regulating the balance of carbon and nitrogen, and improving the fertility of paddy soil.


Assuntos
Fertilizantes/análise , Oryza , Agricultura , Carbono , Esterco , Nitrogênio/análise , Solo , Microbiologia do Solo
2.
Huan Jing Ke Xue ; 40(4): 1957-1964, 2019 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087942

RESUMO

This research studied the response of the input and allocation of photosynthetic carbon (C) to phosphorus (P) in paddy soils. Two treatments were conducted in this experiment:no P application (P0) and the application of 80 mg·kg-1 of P (P80). The rice cultivar was the indica Zhongzao 39. The 13C-CO2 continuous labeling technique was used to identify the photosynthetic C distribution of the rice. The results showed that the application of P80 significantly increased the photosynthates allocation in the rice aboveground, but reduced their allocation in the rhizosphere soil (P<0.05). At the jointing stage, P80 application increased the photosynthetic C content of the rice by 70%, but the root dry weight decreased 31%. Compared with P0, the total C content of the aboveground rice was increased 0.31 g·pot-1 by P80. The ratio of rice roots to shoots decreased with the P80 treatment. Moreover, P80 application led to an increase in the photosynthetic microbial biomass in the non-rhizosphere soil C (13C-MBC) of 0.03 mg·kg-1, but still decreased its allocation in the rhizosphere soil. The allocation of photosynthetic C to the particulate organic matter fraction (POC) and mineral fraction (MOC) in the non-rhizosphere soil showed no significant differences between P0 and P80. Additionally, the P80 fertilization treatment significantly lowered the content of POC in the rhizosphere soil. In summary, P application increased the allocation of photosynthetic C in the soil-rice system, but reduced the accumulation of photosynthetic C in the soil. This research provided a theoretical basis and data supporting the rational application of P fertilizer, and was also of great significance as a study of the transportation and allocation of photosynthetic C and its sequestration potential response to the application of P to the rice soil.


Assuntos
Carbono/química , Fertilizantes , Oryza/fisiologia , Fósforo/química , Solo/química , Fotossíntese
3.
Huan Jing Ke Xue ; 40(3): 1483-1490, 2019 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-31088001

RESUMO

Available carbon is the most active part of the soil carbon pool. It is also the main carbon source of soil microbes and plays an important role in the processes of soil organic carbon mineralization and accumulation. However, the mechanisms are still not clear how soil organic carbon mineralization and its priming effect (PE) are affected by different input levels of readily available carbon, based on the growth requirements of microbes in paddy soil. In this study, an incubation experiment was conducted by adding different levels (0.5, 1, 3, and 5 times of MBC) of exogenous source organic carbon (13C-glucose) to the soil. The mineralization dynamics of labile organic carbon and its priming effect was investigated. The mineralization rate of glucose-C increased significantly with the increasing carbon loading level. The distribution of glucose-C into rapid and slow C pools was also exponentially correlated with the carbon loading (R2=0.99, P<0.05 and R2=0.99, P<0.05, respectively). Negative PE was observed at high carbon loading (3×MBC and 5×MBC); while positive PE was induced by low carbon loading (0.5×MBC and 1×MBC). The cumulative PE was 160.0 mg·kg-1 and 325.1 mg·kg-1, respectively, at the end of the incubation. Redundancy analysis showed that the main factors affecting the cumulative PE were MBC, MBN, and DOC at the initial glucose mineralization stage, while ß-glucosidase, chitinase, and ammonium nitrogen were the main factors at later stages. Therefore, the readily available carbon loading has an important effect on the organic carbon mineralization and PE in paddy soil. Higher carbon loading was good for the accumulation of organic carbon sequestration in paddy soil. This study is of great scientific significance for revealing the activity of organic carbon in paddy fields and for its contribution to the development of sustainable agriculture.

4.
Huan Jing Ke Xue ; 39(1): 331-338, 2018 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965699

RESUMO

Photosynthesized carbon (C) is an important source of soil organic C in paddy fields, and its input and distribution are affected by rice growth and soil fertility. Fertilizer application plays an important role in rice growth. The 13C pulse-labeling method was used to quantify the dynamics and distribution of input photosynthesized C in the rice-(rhizosphere-and bulk-) soil system and its response to nitrogen fertilizer (N) application. The results suggested that N fertilization significantly increased the rice aboveground and the root biomass and decreased the rice biomass root/shoot ratio. The amount of assimilated 13C gradually decreased in the rice plants but gradually decreased over 0-6 days and increased over 6-26 days in the rhizosphere and bulk soil during rice growth. N fertilization significantly increased the amount of assimilated 13C in the rhizosphere soil by 9.5%-32.6% compared with the control. In comparison to the unfertilized treatment, the application of N fertilization resulted in higher photosynthetic13C in rice aboveground and in the root by 24.5%-134.7% and 9.1%-106%, respectively. With the N fertilized and unfertilized treatments, 85.5%-93.2% and 91.3%-95.7%, respectively, of input photosynthetic 13C was distributed in the rice plants. The results suggested that N fertilization significantly affected the distribution of photosynthesized C in the rice-soil system (P<0.01). After 26 days of pulse labeling, the distribution of photosynthetic 13C into rice aboveground was increased by 13.4%, while the distribution into the rhizosphere and bulk soil were decreased by 21.9% and 52.2%, respectively, in the N fertilized treatments compared with the unfertilized treatments. Therefore, the N application increased the distribution of photosynthesized carbon in the soil-rice system but decreased the accumulation in the rhizosphere and bulk soil. The findings of this study provided a theoretical basis for our understanding of the dynamic of photosynthetic C in the plant-soil system and the assimilation of the soil organic matter pool in the paddy soil ecosystem.


Assuntos
Carbono/química , Fertilizantes , Nitrogênio/química , Oryza/crescimento & desenvolvimento , Solo/química , Rizosfera
5.
Huan Jing Ke Xue ; 39(12): 5708-5716, 2018 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628418

RESUMO

The variation characteristics of ecological stoichiometric ratios can reflect the nature of plant adaptation to environmental changes. The C, N, and P contetns, and their stoichiometric ratios in different organs of rice were studied using a CO2 continuous labeling system, by simulating the increase of atmospheric CO2 concentration (800×10-6). The results showed that CO2 doubling promoted the growth of rice organs and increased the root/shoot ratio. CO2 doubling reduced the shoot TN content in different growth periods, increased the C/N ratio in the rice root, shoot, and grain, decreased the N use efficiency, and improved the P use efficiency. Multiple comparison and Venn diagram analyses showed that CO2 concentration only has a significant impact on the TN content in the rice shoot; it contributed little to the variation in rice nutrient content and their stoichiometric ratios, indicating that CO2 doubling had no effect on these. Under the condition of elevated atmospheric CO2 concentrations, the C, N, and P contents and their stoichiometirc ratios, in rice organs had good homeostasis, and the stoichiometric change during growth periods was consistent with "the Growth Rate Theory". In farmland management, appropriate nitrogen fertilizers can alleviate the nutrient balance pressure caused by the increase in CO2 concentration.


Assuntos
Dióxido de Carbono/análise , Carbono/análise , Nitrogênio/análise , Oryza/crescimento & desenvolvimento , Fósforo/análise , Oryza/química
6.
Huan Jing Ke Xue ; 38(2): 760-768, 2017 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964536

RESUMO

To get a better understanding of the microbial autotrophic carbon sequestration potential of paddy fields and its mechanisms, soil incubation experiment was conducted for four representative paddy soils. The molecular biological methods[quantitative PCR (qPCR), clone library and terminal-restriction fragment length polymorphism (T-RFLP) technique] based on cbbL and cbbM genes encoding the key enzymes[ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)] of Calvin cycle were used to determine the abundance and diversity of autotrophic microbes. The results showed that, after 45 days of incubation, carbon dioxide fixation autotrophic microbial abundances were generally increased compared with those before incubation, and cbbL gene abundances were approximately three magnitudes higher than those of cbbM. Dominant microbial populations varied among the four paddy soils, and most of these OTUs were distantly related to known sequences, only part of them could be grouped into Proteobacteria and Actinobacteria. RDA analysis results showed that soil organic carbon (SOC), cation exchange capacity (CEC), pH, clay, silk and sand content had significant effects on the CO2 fixation microbial community. Consequently, the results of this study provide significant reference to understand the role of microorganisms in carbon cycle process. The results are helpful for providing a scientific basis for scientific management of paddy soil fertility and low carbon agriculture construction.


Assuntos
Bactérias/classificação , Dióxido de Carbono/química , Filogenia , Microbiologia do Solo , Carbono , Oryza , Fotossíntese/genética , Polimorfismo de Fragmento de Restrição , Ribulose-Bifosfato Carboxilase/genética , Solo
7.
Huan Jing Ke Xue ; 38(4): 1606-1612, 2017 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965165

RESUMO

A suitable fractionation method of phosphorus (P) is a key to effective assessment of soil P componential features. Here a new biologically-based P (BBP) method was used to evaluate the P fractions in the upland and paddy soils across large-scale area in China. The soil P was divided into four components:① soluble or rhizosphere-intercepted (CaCl2-P), ② organic acid activated and inorganic weakly bound (Citrate-P), ③ enzyme mineralization of organic P (Enzyme-P), ④ potential activation of inorganic P (HCl-P). Then, the relationships between biologically-based P fractions and standard Olsen-P were investigated, and driving factors of P fractions were identified. The results showed that P content was in order of HCl-P>Citrate-P>Enzyme-P>CaCl2-P. All P components of upland soil displayed higher levels than those of paddy soil. Moreover, the P components were highly positively correlated with the Olsen-P, suggesting that each P component contributed to soil P availability. However, it was found that Olsen-P was most highly correlated with CaCl2-P and Enzyme-P (R2=0.359; R2=0.386) in upland soil, while Olsen-P was most highly with Citrate-P (R2=0.788) in paddy soil. This result indicated that available P of upland soil was mainly from organic P mineralization and soluble P, and available P in paddy soil was mainly from inorganic P activation. Redundancy analysis (RDA) showed that the P components were mainly affected by soil pH and silt content, which suggested that it could enhance the P availability via regulating soil pH in the agricultural activities.


Assuntos
Fósforo/química , Solo/química , Agricultura , China , Fazendas , Fertilizantes , Oryza
8.
Huan Jing Ke Xue ; 37(10): 3987-3995, 2016 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964436

RESUMO

Autotrophic bacteria can assimilate atmospheric carbon dioxide (CO2) and convert CO2 into organic carbon. The CO2 fixation by autotrophic bacteria is important for the improvement of carbon sequestration in agricultural soils. However, the effect of soil texture on autotrophic CO2 fixation bacteria and their CO2 fixation capacity is still unknown. Here, two paddy soils with different textures (loamy clay soil and sand clay loam soil) were incubated with continuous 14C-CO2 in a glass chamber. The two soils were developed from the same parent. At the end of 110 days incubation, the 14C-CO2 incorporated in soil organic carbon (14C-SOC), microbial biomass carbon (14C-MBC) and dissolved organic carbon (14C-DOC) were measured to explore the effects of soil texture on the autotrophic bacterial CO2 fixation rates. The effect of soil texture on the composition and diversity of autotrophic CO2 fixation bacterial community was investigated using cloning and sequencing of the cbbL gene, which encodes ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) in the Calvin cycle. The results showed that the average contents of 14C-SOC, 14C-MBC and 14C-DOC were 133.81, 40.16 and 8.10 mg·kg-1 in loamy clay soil, respectively, which were significantly higher than their corresponding contents in sand clay loam soil (P<0.05). This suggested that soil texture not only affected the amounts of autotrophic bacteria CO2 fixation but also had an effect on the transformation of microbial assimilated 14C in soil. The cbbL gene libraries of two soils were significantly different as revealed by libshuff analyses (P<0.05). Phylogenetic analysis showed that cbbL sequences from the loamy clay soil were closely affiliated with known cultures such as Rhodoblastus acidophilus, Blastochloris viridis, Thauera humireducens, Mehylibium sp.and Variovorax sp., whereas these sequences belonging to the sand clay loam soil were related to branching lineages originating from Rhizobiales and Actinomycetales.Rarefaction curve, clone library coverage and diversity index analysis based on bacterial cbbL clone libraries indicated that the loamy clay soil had higher cbbL gene diversity compared to the sand clay loam soil. These results suggested that soil texture had a pronounced effect on the composition and diversity of autotrophic CO2 fixation bacterial communities. The higher clay content, nutrient availability and cation exchange capacity may stimulate the growth and activity of autotrophic bacteria, and result in the higher amounts of 14C in loamy clay soil. These data broaden the understanding and knowledge of mechanisms of microbial carbon fixation and their influencing factors in agricultural soils.


Assuntos
Ciclo do Carbono , Dióxido de Carbono/metabolismo , Microbiologia do Solo , Solo , Bactérias/classificação , Bactérias/metabolismo , Carbono , Filogenia , Ribulose-Bifosfato Carboxilase/genética
9.
Ying Yong Sheng Tai Xue Bao ; 26(6): 1807-13, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26572036

RESUMO

Paddy soils not only function as an important sink for "missing carbon" but also play an important role in the production of greenhouse gases such as N2O and CH4. Dynamic changes in greenhouse gases in the atmosphere are closely related to microbially mediated carbon and nitrogen transformation processes occurring in soil. Using soil samples collected from a long-term fertilization experimental site in Taojiang County, subtropical China (established in 1986), we determined the effects of long-term (>25 years) non-fertilization (CK), chemical fertilization (NPK), and NPK combined with rice straw residues (NPKS) on soil bacterial and archaeal community structures. The 16S rRNA genotypes from the three differently treated soils were divided into 9 bacterial phylotypes, mainly including Proteobacteria, Acidobacteria, Chloroflexi, and archaea of Crenarchaeota and Euryarchaeota. The relative abundance of Proteobacteria, Acidobacteria and Crenarchaeota increased in the soils under NPK and NPKS treatments, with the increase being greater in the latter treatment. LUBSHUFF statistical analyses also demonstrated that there was significant difference among the microbial community compositions in CK-, NPK- and NPKS-treated soils. The abundance of bacterial and archaeal 16S rRNA genes ranged from 0.58 x 10(10) to 1.06 x 10(10) copies · g(-1) dry soil and from 1.16 x 10(6) to 1.72 x 10(6) copies · g(-1) dry soil, respectively. Application of fertilizers increased the bacterial and archaeal abundance and diversity in the treated soils, with NPKS > NPK. Long-term chemical and organic applications significantly affected the abundance, diversity and composition of bacterial and archaeal communities in paddy ecosystems.


Assuntos
Ecossistema , Fertilizantes , Oryza , Microbiologia do Solo , Solo/química , Archaea/classificação , Bactérias/classificação , Carbono/análise , China , Nitrogênio/análise , RNA Ribossômico 16S
10.
Huan Jing Ke Xue ; 36(10): 3839-44, 2015 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-26841620

RESUMO

Soil microbe plays an important role in carbon cycling, however, the effect of land use on soil microbe remain unclear. In present study, soil samples were collected from a long-term field experiment (Pantang Agroecosystem) in subtropical China (established in 1989), including paddy-rice (PR), upland-crop (UC), and paddy rice-upland crop rotation (PU) on soil bacterial (bacteria and Archaea) community structures. The effects of long-term different land uses were determined using terminal restriction fragment length polymorphism (T-RFLP) and quantitative PCR (RT-PCR) of the 16S rRNA gene. The abundance of soil microbial 16S rRNA genes ranged from 2.5 x 10(9)-1.5 x 10(10) copies x g(-1) dry soil. Compared with the PR, UP and UC led to a significant reduction in 16S rRNA genes abundance (P < 0.05). The soil microbial communities were dominated by bacteria such as Proteobacteria (76 and 90 and 327 bp; relative abundance of 47% - 53%) and Chloroflexi (65 bp; relative abundance of 10% - 12%). RDA statistical analyses demonstrated that there were significant differences in the microbial community composition in PR, UC, and PU treated soils. Soil organic carbon and total nitrogen content were the most highly statistically significant factors which positively influenced the soil microbial population. Taken together, our findings prove the long-term different land uses significantly influence the microbial diversity and community structure. The rice planting is an effective way of sustainable utilization of subtropical red soil, and it is more advantageous to the accumulation of soil organic matter, soil fertility and microbial diversity.


Assuntos
Agricultura/métodos , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Microbiologia do Solo , Archaea/classificação , Bactérias/classificação , Biodiversidade , Carbono/análise , Ciclo do Carbono , China , Nitrogênio/análise , Oryza , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S , Solo/química
11.
Ying Yong Sheng Tai Xue Bao ; 25(6): 1708-14, 2014 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-25223028

RESUMO

In this study, the mineralization and decomposition of autotrophic microbe assimilated carbon (new carbon) and native organic carbon in three upland and three paddy soils in subtropical China were measured using the 14C-labelled tracer technique. The results showed that, during the 100-d incubation, the mineralization of the 'new carbon' displayed three stages: a rise in the first 10 days, a slowdown from 11-d to 50-d, and a stabilization stage after 50 d. The mineralization ratio of the 'new carbon' ranged between 8.0% and 26.9% and the mineralization rate ranged from 0.01 to 0.22 microg 14C x g(-1) x d(-1) (0.01-0.22 microg 14C x g(-1) x d(-1) in paddy soils and 0.01-0.08 microg 14C x g(-1) x d(-1) in upland soils). However, the mineralization ratio and rate for native SOC were 1.55%-5.74% and 1.3-25.66 microg C x g(-1) x d(-1), respectively. In the soil active C pools, the 14C-dissolved organic carbon (DOC) first rose by as much as 0.3 mg x kg(-1) in the early stages of incubation (0-10 d), decreased rapidly by 0.42 mg x kg(-1) from 10-30 d, and then declined gradually. The fluctuation of the 14C-microbial biomass carbon (MBC) differed from that of the 14C DOC. At the beginning stage of the incubation (0-10 d), the 14C-MBC decreased rapidly, and then rapidly increased from 10 to 30 d, and the rate of increase reduced and was gradually stabilized after 40 d. The 14C-DOC/DOC renewal rate in the paddy soil was significantly higher than in the upland soil while the 14C-MBC/MBC renewal rate in the upland soil was significantly greater than in the paddy soil.


Assuntos
Ciclo do Carbono , Carbono/análise , Microbiologia do Solo , Solo/química , Biomassa , China , Oryza
12.
Huan Jing Ke Xue ; 35(5): 1933-8, 2014 May.
Artigo em Chinês | MEDLINE | ID: mdl-25055689

RESUMO

The input of rice-photosynthesized carbon (C) into soil plays an important role in soil C cycling. A 13C-labelled microcosm experiment was carried out to quantify the input of photosynthesized C into soil C pools in a rice-soil system during the tillering stage. Growing rice (Oryza sativa L. ) was continuously fed with 13C-labeled CO, ( C-CO, ) in a closed chamber without nitrogen (NO), or at different rates of N supply (N10,N20, N30, N40 or N60). The results showed that there were significant differences in rice shoot (1.58 g plot-1 to 4.35 g plot-1) and root (1.05 g plot-1 to 2.44 g plot-1 ) biomass among the N treatments after labeling for 18 days. The amounts of 13C in shoots and roots ranged from 44.0 g plot-1 to 157.6 g.plot-1 and 8.3 g.plot-1 to 49.4 g.plot-1, respectively, and generally followed the order of N60 > N40 > N20 > N10 > NO. The contents of rice-planted 13C-SOC, 13C-DOC and 13C-MBC in soil carbon pool were much higher than those of CK (without rice and N supply). The amount of 13C-SOC ranged from 11.1 g plot - to 23.7 gplot-1 , depending on the rate of N addition, accounting for 10.2% -18. 1% of the net assimilation. The amounts of 13C-DOC and 13C-MBC ranged from 4. 82-14.51 microg kg-1 and 526. 1-1 478.8 microg kg-1 , both depending on the N application rate. In addition, at 18-day of labeling, the 13C-SOC, 13C-DOC and 13C-MBC concentration was positively correlated with the rice biomass. Therefore, our results suggest that paddy soils can probably sequester more C from the atmosphere if more photosynthesized C enters the soils and N application can stimulate C rhizodeposition during the tillering stage.


Assuntos
Carbono/análise , Nitrogênio/química , Oryza/crescimento & desenvolvimento , Fotossíntese , Ciclo do Carbono , Isótopos de Carbono/análise , Monitoramento Ambiental , Fertilizantes , Raízes de Plantas/química , Solo/química
13.
Huan Jing Ke Xue ; 35(3): 1144-50, 2014 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-24881409

RESUMO

Carbon dioxide (CO2) assimilation by autotrophic microorganisms plays a significant role in carbon sequestration in terrestrial ecosystems. Here, experiments were carried out to determine the contribution of autotrophic microorganisms to atmospheric CO2 fixation in 6 representative agricultural soils. Soils were incubated continuously in an atmosphere of 14CO2 and the distribution of labeled C into soil organic carbon (14C-SOC) was determined after 110 d. Meanwhile, the amounts of the cbbL genes were determined by Quantitative PCR and the RubisCO activity was measured in different soils. The results showed that substantial amounts of 14CO2 were fixed into 14C-SOC (ranged 10.63-133.81 mg x kg(-1) after 110 d of continuous labeling, with an annual, global rate of about 0.57-7.3 Pg. The microbially fixed C was also incorporated into the active carbon pool [the dissolved organic C (14C-DOC) and in the microbial biomass C (14C-MBC)], and ranged from 0.96 to 8.10 mg x kg(-1) and 1.70 to 49.16 mg x kg(-1), respectively. The proportion of 14C-SOC in SOC was 0.09%-0.64%. The 14C-DOC /DOC and 14C-MBC /MBC were 5.07%- 4.3% and 2.51%-13.12%, respectively. Thus, the distribution and transformation of microbially fixed C had a larger influence on the dynamics of DOC and MBC than on the total SOC dynamics. Moreover, the abundance of soil bacteria cbbL gene and RubisCO activity were in the range of 2.40 x 10(7) - 1.9 x 10(8) copies x g(-1) and 34.06-71.86 nmol x (g x min)(-1), respectively. The 14C-SOC content was significantly correlated with both the 14C-MBC content (P < 0.01) and the RubisCO activity (P < 0.01) in all tested soils. We concluded that autotrophic CO2 assimilation by soil microbes is significant to the global C cycle.


Assuntos
Dióxido de Carbono/metabolismo , Sequestro de Carbono , Ribulose-Bifosfato Carboxilase/metabolismo , Microbiologia do Solo , Agricultura , Ecossistema , Genes Bacterianos , Reação em Cadeia da Polimerase , Solo/química
14.
Huan Jing Ke Xue ; 34(7): 2809-14, 2013 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-24028017

RESUMO

Soil autotrophic microbe has been found numerous and widespread. However, roles of microbial autotrophic processes and the mechanisms of that in the soil carbon sequestration remain poorly understood. Here, we used soils incubated for 110 days in a closed, continuously labeled 14C-CO2 atmosphere to measure the amount of labeled C incorporated into the microbial biomass. The allocation of 14C-labeled assimilated carbon in variable soil C pools such as dissolved organic C (DOC) and microbial biomass C (MBC) were also examined over the 14C labeling span. The results showed that significant amounts of 14C-SOC were measured in paddy soils, which ranged from 69.06-133.81 mg x kg(-1), accounting for 0.58% to 0.92% of the total soil organic carbon (SOC). The amounts of 14C in the dissolved organic C (14C-DOC) and in the microbial biomass C (14C-MBC) were dependent on the soils, ranged from 2.54 to 8.10 mg x kg(-1), 19.50 to 49.16 mg x kg(-1), respectively. There was a significantly positive linear relationship between concentrations of 14C-SOC and 14C-MBC (R2 = 0.957**, P < 0.01). The 14C-DOC and 14C-MBC as proportions of total DOC, MBC, were 5.65%-24.91% and 4.23%-20.02%, respectively. Moreover, the distribution and transformation of microbes-assimilated-derived C had a greater influence on the dynamics of DOC and MBC than that on the dynamics of SOC. These data provide new insights into the importance of microorganisms in the fixation of atmospheric CO2 and of the potentially significant contributions made by microbial autotrophy to terrestrial C cycling.


Assuntos
Sequestro de Carbono , Carbono/metabolismo , Microbiologia do Solo , Solo/química , Processos Autotróficos , Radioisótopos de Carbono/análise
15.
Huan Jing Ke Xue ; 34(6): 2375-82, 2013 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-23947059

RESUMO

Soil microbe plays an essential role in terrestrial ecosystem through its role in cycling mineral compounds and decomposing organic matter. The objective of this paper is to determine the influences of different land use patterns on soil microbial activity and community structure, which were analyzed by phospholipids fatty acid (PLFA) and MicroResp method, based on a long-term fertilization experiment in Taoyuan County, Hunan Province. There were three land use patterns included, i. e. paddy fields (PS), paddy-upland rotation (PU) and upland land (US) soils. The results showed that the amounts of bacteria PLFA, fungi PLFA and the total PLFA were generally following the order PS > PU > US. The ratio of bacteria PLFA/fungi PLFA followed the order PU > US > PS, however, the ratio of Gram-positive bacteria PLFA (G+ PLFA) to Gram-negative bacteria PLFA (G(-) PLFA) in PU was the highest, and there's no significant difference in PU and US. In addition, principal components analysis (PCA) and the average concentration (mol x mol(-1)) of biomarker-PLFAs also revealed that the relative content of fungi and G(-) in PS was much higher than those of in PU and US (P < 0.05). However, the relative content of G(+) in PU was higher than those of other two land use patters. Therefore, Microbial community structure was influenced significantly by land use patterns in our study. Soil microbial biomass had significant relationships (P < 0.05) with SOC, TN and MBC, but had no significant correlation with CEC. Meanwhile, MicroResp analysis indicated that most of the carbon substrate addition enhanced the microbial respiration rates, although different substrate had different use efficiency. The average of carbon substrate use efficiency could be also ranked in the order: PS > PU > US. We conclude that microbial activity and community structure were influenced significantly by land use patterns in farmlands.


Assuntos
Bactérias/classificação , Ecossistema , Oryza/crescimento & desenvolvimento , Microbiologia do Solo , Bactérias/crescimento & desenvolvimento , Carbono/análise , Ácidos Graxos/análise , Fungos/crescimento & desenvolvimento , Nitrogênio/análise , Fosfolipídeos/análise , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...